

Ethernet Past and Future Finding The Right Lever

Peter Jones – Principal Engineer – Cisco Systems
CHI-NOG 08

Ethernet Past and Future Finding The Right Lever

Peter Jones – *Distinguished* Engineer – Cisco Systems CHI-NOG 08

By Way of Introduction ...

Sandgroper

means

a person from Western Australia

Sandgropers!
Living 4 times
as big as Texas!

I'm a **Distinguished Engineer** within the Catalyst development team, and have been with Cisco for since 2005.

I work on capabilities and solutions in Catalyst system architecture (ASIC/Hardware/Software) that may be up to 5 (or more) years out.

I work in industry bodies (e.g. IEEE 802.3, NBASE-T Alliance, Ethernet Alliance, ...) to define and promote new Ethernet Standards...

I'm interested in Infrastructure Evolution and Consumable Technology

petejone@cisco.com @petergjones about.me/petergjones

Agenda

- The First 4 Decades
- Forecasts
- Ecosystem
- NBASE-T
- 25G outside the DC
- 10Mb/s Single Pair Copper

Wrapup

"The Ethernet Memo" by Bob Metcalfe, May 22, 1973

The First 4 Decades

When did it start?

Hand drawn by Robert M. Metcalfe in 1976, photographed by David R. Boggs for a 35mm slide to present Ethernet to the National Computer Conference. http://www.ieee802.org/3/ethernet_diag.html

Ethernet is older than lots of the people in this room

- Bob Metcalf wrote "The Ethernet Memo" at Xerox PARC May 22 1973
- "Multipoint data communication system with collision detection" patent March 31 1975
- IEEE 802.3a (10Base2 10MBit/s over thin coax) Standard approved in 1983

Twisted Pair

How much?

- 4+ Billion 100/1000BASE-T switch ports in last 20 years
- ~1Billion BASE-T ports/year port total

Why choose BASE-T?

- Ease of use (e.g., Structured cabling)
- Incremental speed upgrades
- Power and data on single cable

2.5G/5G BASE-T?

Between 2003 to 2014 ~70 billion meters of Cat 5e and Cat 6 cabling were sold....

- ~90% of installed base
- 1.3B outlets in 2014, plus 110M per year
- Enormous network infrastructure asset

10 meters of cabling for everyone on Earth

Forecasts

Copper Cable

It's here to stay

Global sales of copper cabling in LAN, million outlets/drops, 2015 – 2021

Source: BSRIA survey and modelling May 2017

Copper Cable

Used for?

Outlets/nodes/links, Data, WAPs and IoT, US, million units, 2015 – 2021

Source: BSRIA survey and modelling May 2017

Switch ports 2001 - 2022

Ethernet Switch Ports

New, fast, exciting != volume Lots of <=10Gb/s ports

Dell'Oro Group Ethernet Switch 5-year Forecast Jan 2018

Installed Base by Speed

Enterprise Ethernet Switch Installed Base (1.2 B at end of 2017) 650 Group Ethernet Switch Long-Term Forecast Dec 2017

Move to wireless

Ethernet vs 802.11 connections 650 Group Unified Access Long-Term Forecast Dec 2017

WiFi Trends

802.11 connections by type 650 Group WLAN Long-Term Forecast Dec 2017

802.3 & 802.11

"NBASE-T will transition wireless LAN to being additive to the Ethernet switch market"

WLAN's Impact on Ethernet Switch Revenue

Dell'Oro Group Advanced Research Report Campus Networks Jan 2018

Ecosystem

From Customers/Field

From Industry

What's IEEE 802.3 doing? (and what I am doing there?)

IEEE 802.3 ETHERNET WORKING GROUP

- The IEEE 802.3 Working Group develops standards for Ethernet networks. We have a number of active projects, study groups, and ad hocs as listed below:
 - IEEE P802.3bt DTE Power via MDI over 4-Pair Task Force.
 - IEEE P802.3ca 25 Gb/s, 50 Gb/s, and 100 Gb/s Ethernet Passive Optical Networks Task Force.
 - o IEEE P802.3cb 2.5 Gb/s and 5 Gb/s Backplane Task Force.
 - IEEE P802.3cd 50 Gb/s, 100 Gb/s, and 200 Gb/s Ethernet Task Force.
 - IEEE P802.3.2 (IEEE 802.3cf) YANG Data Model Definitions Task Force
 - IEEE P802.3cg 10 Mb/s Single Twisted Pair Ethernet Task Force.
 - o IEEE P802.3ch Multi-Gig Automotive Ethernet PHY Task Force.
 - IEEE P802.3 Revision to IEEE Std 802.3-2015 (IEEE 802.3cj) Maintenance #12 Task Force.
 - IEEE 802.3 Beyond 10 km Optical PHYs Study Group.
 - o IEEE 802.3 10 Mb/s Backplane Ethernet Study Group.
 - o IEEE 802.3 100 Gb/s per Lane Electrical Study Group.
 - o IEEE 802.3 Next-generation 200 Gb/s and 400 Gb/s MMF PHYs Study Group.
 - o IEEE 802.3 Bidirectional 10 Gb/s and 25 Gb/s Optical Access PHYs Study Group.
 - IEEE 802.3 New Ethernet Applications Ad Hoc.
 - o IEEE 802 3 SCC18 Ad Hoc.
 - IEEE 802.3 Isolation Ad Hoc.

NBASE-T/mGig

NBASE-T Alliance

Overview

- NBASE-T Alliance (<u>www.nbaset.org/</u>)
 - Vendor alliance for 2.5G/5G BASE-T
 - Public info check http://www.nbaset.org/library/
- Who is in the Alliance?
 - Network infrastructure companies, e.g., components, systems, cabling, testing equipment,
- Alliance roles?
 - Educate the market
 - Facilitate interoperability
 - Enable widespread deployment
 - Augment the specification if needed

Strength: Full Ecosystem

Success: 802.3 standard in < 2 years, fastest growing market area

Promoters

Contributors

Adopters

Liaisons

NBASE-T Questions and Answers

Three Questions Three Answers Who needs > 1Gb/s? Digital Transformation is here Roadblocks? Installed cabling asset Upgrade the network, Value of NBASE-T? not the building

Use Cases

Overview

Enterprise Wireless - University of British Columbia

Scientific Compute - Monash Pharma

Cruise Ships - Carnival/Princess

UBC and Wireless

- Good WiFi is table stakes for universities.
- Huge wireless network (5000 APs), < 6 SSIDs in all.
- Policy/VRF based on identity

DOWNLOAD SPEED (1)

UPLOAD SPEED

- 802.11AC Wave2 and NBASE-T.
- Supporting challenging environment.
- Excellent service delivered.

PING

Monash Pharma & NBASE-T

Massive Data Capture and Analysis

Needs and restrictions:

- High bandwidth for large data transfers
 - One microscope produces 500GB images
 - Others only 200-300GB.
- Using "regular enterprise network service", not funded for a dedicated network

Q: "How can we get more done?

Impact of NBASE-T:

- Cisco switches & ASUS NICs (~\$130) delivering 5-10Gb/s.
- Data transfers 4-5X faster, enables new work
- IT/networking able to say "Yes"

A: "Remove the bottleneck with NBASE-T"

Resort Hotel vs. Cruise Ship

Encore Las Vegas

https://www.emporis.com/buildings/216660/encore-las-vegas-nv-usa https://en.wikipedia.org/wiki/Encore_Las_Vegas

Opened: 2008

Rooms: 2,034 **Floors:** 48

Floor Space: 4.5 million sqft

Height: 631 feet **Width:** 93 feet

Regal Princess

https://www.princess.com/ships-and-experience/ships/gp-regal-princess/ https://en.wikipedia.org/wiki/Regal_Princess_(2014)

Inaugural Cruise: 2014

Cabins/Guests: 1,780/3,560

Decks: 19

Tonnage: 141,000 Length: 1,083 feet Height: 217 feet

Networks on Cruise Ships

Like an Enterprise Network, but...

https://www.cruisedeckplans.com/assets/deckimages/org/www.cruisedeckplans.com-deckplan.php-ship=Regal-Princess.png

Product Sampler more at www.nbaset.org

https://www.apple.com/imac-pro

https://www.e2v.com/products/imaging/cameras/uniiqa-4k-mono-and-colour/

Pro Gaming Multi-Gig Ethernet Switch http://www.netgear.com/npg/sx10/

NBASE-T – Key Industry Messages

**MBASE-T will transition wireless LAN to being additive to the Ethernet switch market. NBASE-T will require higher speeds through the network and drive higher prices which will amplify revenue growth.

NBASE-T will play a critical role as PCs, APs, and other IOT devices begin to drive connections in excess of 1 Gbps. NBASE-T is continuing to gain traction with all campus switch vendors expected to ship offering by the end of 2018 and port shipments expanding to be a significant portion of the enterprise market.

The *growth of NBASE-T* in the enterprise market is accelerating rapidly. It's key that CIM help its readers maximize the benefits for their customers and networks. I look forward to working with the NBASE-T alliance and the Ethernet ecosystem to continue to deliver trusted advice to the industry.

Tam Dell'Oro

Founder & CEO, Dell'Oro Group January 2018

Alan Weckel

Founder & Technology Analyst 650 Group

January 2018

Patrick McLaughlin

Chief Editor –
Cabling Installation and Maintenance
February 2018

Where Next?

802.3 rule: 10X the speed for 3x the cost

Phyletic Gradualism

OK – then what?

Speciation fills in ecosystem

Standards active in — 10M, 2.5G, 5G, 10G, 25G, 50G, 100G, 200G

25G outside the DC

25Gb/s Ethernet

What

25Gb/s single lane Ethernet over Twinax(3-5m), BASE-T(30m),

MMF(100m), SMF(10km, 40km)

Why

Evolution from 10Gb/s, first in DC, then spreading to SP, Campus

Status

IEEE Std 802.3by-2016 approved June 2016

802.3cc 25 Gb/s Ethernet over SMF Task Force targeting completion October 2017

25Gb/s Ethernet plus what?

What Are We Talking About?

- Application spaces that could move to 25Gb/s lanes (1X or 4X) over SMF.
- 25GbE SMF provides optimized single lane switch/router connectivity

Enable 25GbE to move from DC to campus and beyond.

25GSMF CFI: http://www.ieee802.org/3/cfi/1115_2/CFI_02_1115.pdf

25Gb/s SMF Ethernet

10Mb/s again? Really?

Why 10Mb/s (Back to the Future)

Ethernet Gap in Industrial Networking

Business

FRP

- Desire to converge on **one** network type
- Ethernet adoption is happening where technically possible
- Non-Ethernet fieldbuses still required to complete communications to the edge
 - Cable lengths > 1km
 - 1200 baud to hundreds of kb/sec
 - Challenges: Combined reach & rate, special environments, cost of operation

Ethernet/IT solutions already Inventory MES Control established LES Plant Asset Operator Engineering Station Station Management Supervisory Control Ethernet solutions already defined as "Industrial Basic Etherne Data Access Instrumentation and Remote I/O

Credit: Dr. Raimund Sommer, Endress + Hauser, ODVA Industry Conference, Oct. 2014.

12

Ethernet Gap at the 'Edge'

Standard

10Mb/s Ethernet – Fieldbus Upgrade

Why 10Mb/s and Extended Reach?

- A new solution is required to cover a range of reach and rate with a single design
- 10Mb/s (a standard MAC) and 1200m address most fieldbus applications
- Study group will consider, but not expected to cover all extremes/outliers

10Mb/s Ethernet – Fieldbus Upgrade

Why Single Twisted Pair?

- Enables cable reuse
 - Installed base of Single Twisted Pair, usually shielded
 - Certain cables are certified
 - Lengthy fieldbus cables are expensive to install (often in filled conduit)
 - End nodes are easier to replace
 - Similar value proposition to 2.5G/5GBASE-T Task Force
- Enables constrained form factor applications (sensors etc.)
 - Reduced size and cost

Tigh Cable Reuse Value

Fieldbus	Cable Type	Cable Power
FOUNDATION H1	FF-844 specified	Yes
HART	Various	Yes
PROFIBUS PA	IEC 61158 Type A	Yes
4-20mA	SP-50 instrumentation cable	Yes
CANopen	EIA-485	Yes
Modbus RTU	EIA-485	No
CC-Link	CC-Link, Ver.1.10 specified Shielded, 3- & 5-core	No
DeviceNet	ODVA DeviceNet specified (5-core, various classes)	Yes
ControlNet	RG-6/U Coaxial	No
INTERBUS	3 / 6 no. twisted pairs, various	Yes
PROFIBUS DP	IEC 61158 Type A (22AWG?)	No

21

10Mb/s Ethernet – Fieldbus Upgrade

IEEE 802.3cg – 10Mb/s Single Pair Ethernet (10SPE)
http://www.ieee802.org/3/cg/

CSMA/CD is BACK!
Multidrop + power over ~25-50m

10SPE Example Kone & Elevators

Who is Kone?

KONE Corporation was founded in *1910* and is headquartered in *Espoo near Helsinki, Finland*. Kone is an international engineering and service company employing some *52,000* personnel worldwide.

The firm is the *4th largest manufacturer* of elevators and escalators worldwide, and also provides *maintenance services and modernization*.

What's the goal?

On their mind?

What does r network mean

Intelligent elevators are here them talk in real-time around

Coming soon - service updates on the go with KONE Mobile.

Kone elevator network structure

A typical elevator

Layered architecture (bottom-to-top):

- User I/O and sensors
- Elevator and motion control
- Group control
 - Single units are often linked into groups of
 2-16 single units via networks
- Site control and supervision
 - Groups are often linked into site control and supervision groups via networks
- Cloud
 - Sites are monitored and controlled remotely

Kone elevator network requirements

Requirements for elevator communication systems

- Requirements of today's communication systems include but is not limited to following:
 - Edge computing
 - Functional safety, time deterministic behavior
 - Voice and video streaming
 - Power over network
 - Software upgrade possibility
 - Cyber security
 - Single common frame format
 - Single diagnostic process/tool for all comm. wires
- Ethernet based communication networks can meet all these needs
 - Problem so far has been cost and size of components as well as lack of multidrop technology

10SPE for Elevators

IEEE 802.3cg 10 Mb/s Single Pair Ethernet (10SPE)

- IEEE 802.3cg single pair Ethernet could be a driver to transform elevators and escalators into Ethernet World
 - 10SPE gives over two magnitudes better bandwidth than legacy systems
 - Multidrop included
 - Power over data line
 - Strong standardization support
- It can be estimate that half of the 20 million nodes per year market could be Ethernet-based in ten years' time

Single Pair Ethernet

http://interlochenpublicradio.org/post/kids-commute-don-quixote-week-tuesday

Single Pair Ethernet: Follow the BASE-T journey

- 1000 BASE-T most successful Ethernet standard
- 4+ Billion 100/1000 BASE-T switch ports
- BASE-T port total is ~1Billion/year

Key Attributes:

- Power+Data
- Structured cabling
- Standard Connectors

Wrap-up

Thanks

First edition - 1605

Thank you

