
Optimizing your
virtual switch for
VXLAN

Ron Fuller, VCP-NV, CCIE#5851
(R&S/Storage)
Staff Systems Engineer – NSBU
fuller@vmware.com

VXLAN Protocol Overview

Ethernet in IP overlay network

– Entire L2 frame encapsulated in
UDP

– 50+ bytes of overhead

24 bit VXLAN Network Identifier

– 16 M logical networks

VXLAN can cross Layer 3 network
boundaries

Overlay between ESXi hosts

– VMs do NOT see VXLAN ID

VTEP (VXLAN Tunnel End Point)

– VMkernel interface which serves
as the endpoint for
encapsulation/de-encapsulation
of VXLAN traffic

Technology submitted to IETF for
standardization

– With Cisco, Citrix, Red Hat,
Broadcom, Arista and others

Inn

er

Des

t

MA

C

Inne

r

Sour

ce

MA

C

Optio

nal

Ether

Type

Optio

nal

Inner

802.1

Q

Origina

l

Ethern

et

Payloa

d

Inner Ethernet Frame

Out

er

Des

t

MA

C

Outer

Sourc

e

MAC

Optio

nal

VXLA

N

Type

Optio

nal

Outer

802.1

Q

IP

Hea

der

Data

*

IP

Pro

to-

col

Head

er

Chec

k

Sum

Outer

Sour

ce IP

Sour

ce

Port

Dest

Port

(8472

)

UDP

Len

gth

UD

P

Che

ck

Su

m

VXLA

N

Flags

RS

VD

VXL

AN

NI

(VNI)

FC

S

RS

VD

VXLAN Encapsulated Frame

Outer

Ethernet

Header

14 bytes

Outer IP

Header

20 bytes

Outer

UDP

Head

er

8 bytes

VXLA

N

Head

er

8 bytes

Ether

Type

Out

er

Des

t IP

*IP Header Data = Version, IHL,

TOS, Length, ID

VXLAN Frame Format

Network Adapter Offloads

4

TCP Checksum

Offload

Large Receive

Offload

- Software offloads TCP checksum
calculation on send and checksum
verification on receive

- NIC aggregates packets to send large
packet to software

- Software sees fewer packets and
interrupts

Network Adapter Offloads

5

TCP

Segmentation

Offload

Receive Side

Scaling

- Operating system sends large sized TCP
packets to NIC

- NIC segments packets as per physical
MTU

- NIC distributes packets among queues

- Unique receive thread per queue to drive
multiple CPUs

Important features for NSX vSwitch performance

Payload MAC IP TCP

MAC IP Payload TCP

TCP Segment Offload

6

VM on VLAN dvPG
sends large TCP
packet to Virtual
NIC

1
MAC IP Payload TCP

NSX vSwitch sends
large packet to
TSO enabled
physical NIC

2 MAC IP Payload TCP

Physical NIC
segments packet
based on physical
MTU

3
L2 IP Payload TCP

VLAN
dvPG

Offloading TSO to NIC
allows host to conserve
CPU cycles while
sending large TCP
messages. Almost all
NICs support TSO for
VLAN traffic

TSO
support in
PNIC

Pre NSX - How is TCP forwarding optimized ?

VM sends large
TCP packet to
Virtual NIC

1
MAC IP Payload TCP

MAC IP VXLAN UDP MAC IP TCP Payload

VXLAN
encapsulation –
every packet is
now a UDP frame

2

No TSO for
VXLAN
support in
PNIC

TCP Segment Offload

7

TCP traffic with NSX – What changes?

VM on VXLAN

MAC IP VXLAN UDP MAC IP TCP Payload

MAC IP VXLAN UDP MAC IP TCP Payload

VM sends large
TCP packet to
Virtual NIC

1

VXLAN
encapsulation and
TSO in software –
because the NIC
can’t do TSO for
the inner TCP
packet within a
UDP frame

2

MAC IP VXLAN UDP MAC IP TCP Payload

TCP Segment Offload – VM on VXLAN LS

8

Segmenting large TCP message in software is CPU
intensive operation

TCP traffic with NSX – What changes?

No TSO for
VXLAN
support in
PNIC

VM sends large
TCP packet to
Virtual NIC

1
MAC IP Payload TCP

MAC IP VXLAN UDP MAC IP TCP Payload

VXLAN
encapsulation –
every packet is
now a UDP frame

2

TSO for
VXLAN
support in
PNIC

TCP Segment Offload – VM on VXLAN LS

9

TSO Support for VXLAN

MAC IP VXLAN UDP MAC IP TCP Payload

MAC IP VXLAN UDP MAC IP TCP Payload

10

VM sends large
TCP packet to
Virtual NIC

1

VXLAN
encapsulation

2

TSO for VXLAN
packets in PNIC

3

MAC IP VXLAN UDP MAC IP TCP Payload

TCP Segment Offload – VM on VXLAN LS

TSO for VXLAN traffic generically
referred to as “VXLAN Offload” by
NIC vendors

TSO for
VXLAN
support in
PNIC

CPU cycles conserved while sending traffic

TCP traffic with NSX – What changes?

Netqueue

11

ESXi Kernel Space

Network Adapter

Queues

30%

cor

e1

30%

cor

e2

30%

cor

e3

30%

cor

eN

threa

d1

thread

4

threa

d3
threa

d3

Defau

lt

queu

e

queue

n

queu

e3
queu

e2

- Netqueue is a feature designed to
enable a vSphere host to receive
line rate traffic from the physical
network

- Works by driving multiple CPUs to
handle receive packet processing

- Before NSX – there is no traffic
encapsulation and VDS receives
traffic to multiple unique MAC
addresses (MAC address
assigned to VM vNICs)

- Netqueue works by steering traffic
destined to each VM MAC to a
unique NIC queue.

- Interrupts raised by NIC queues
will drive multiple CPUs

Traffic to
MAC A

Traffic to
MAC B

Traffic to
MAC n

With NSX all traffic to a vSphere host is destined to VTEP MAC address.
Ability to drive multiple CPU with Netqueue is lost

ESXi Kernel Space

Network Adapter

Queues

Receive Side Scaling (RSS)

30%

cor

e1

30%

cor

e2

30%

cor

e3

30%

cor

en

threa

d1

thread

4

threa

d3
threa

d3

Defau

lt

queu

e

queue

n

queu

e3
queu

e2

- RSS tries to achieve the same end
result as Netqueue – use multiple
CPUs to handle receiving of
packets

- Instead of MAC addresses, RSS
uses packet’s Layer 2 – 4 headers
to load balance traffic across
multiple queues

- RSS is not enabled for all MACs.
VDS enables RSS for traffic
destined to VTEP MAC addresses

12

Flow
A

Flow
B

Flow
C

Flow
D

Receive Side Scaling (RSS)

13

ESXi Kernel Space

Network Adapter

Queues

30%

cor

e1

30%

cor

e2

30%

cor

e3

30%

cor

en

threa

d1

thread

4

threa

d3
threa

d3

Defau

lt

queu

e

queue

n

queu

e3
queu

e2

Flow
A

Flow
B

Flow
C

Flow
D

1. Packet arrives at default
queue

2. MAC filters attached to the
queue are evaluated to see if
RSS is required for packet
dest MAC

3. If RSS is not enabled for
packet dest MAC then
default queue / thread
processes traffic

4. If RSS is enabled for the dest
MAC then packet is hashed
using configured RSS
algorithm to one of 4 queues
reserved

vSphere supports up to 4 queues for
RSS. Sufficient for receiving 10G
traffic at 1500 bytes

vSphere Inbox v/s Async Drivers

15

- Inbox Drivers - vSphere packages NIC drivers into ESXi. Typically
updated at vSphere major releases.

- Async Drivers – New NIC driver functionality and performance
improvements released by NIC vendor independent of vSphere release.
These drivers can be downloaded from
https://my.vmware.com/web/vmware/downloads

- Once the async driver matures that version is pulled into the next major
vSphere release.

- With some NICs the vSphere inbox driver is optimal for VXLAN traffic

(i.e. support VXLAN TSO and RSS) whereas with many NICs the inbox
driver is not optimal and will require an upgrade (on compute and edge
hosts) to the recommended async version

https://my.vmware.com/web/vmware/downloads
https://my.vmware.com/web/vmware/downloads

Test Topology and
Tools

Test Topology

- East – West traffic before NSX /
Network Virtualization

- Establish Performance
baseline on VDS with VMs
on VLANs

- East – West traffic with NSX /
Network Virtualization

- Logical Switching

1

2

NSX Performance testing topology

18

Overlay to Physical at Layer 3

3

NSX Performance testing done in typical NSX
topologies documented in design guide.

V

M4 V

M1

NSX vSwitch

 Logical Switch

V

M4 V

M1

 Logical Switch
VLAN

Physical

Server 1

Physical

Server 8

Layer 3 Peering

Compute

Host 1

Compute

Host 2

Edge Host

1

Test Tools and Methodology

19

- iperf for bandwidth testing

- Supports running TCP and UDP traffic

- Multiple TCP and UDP sessions support

- UDP streams at defined sending rate to verify no loss UDP rate

- On Server “iperf -s”.

- On client iperf –c <server IP> -t <duration> -P <number of sessions>

Netperf for latency test

• TCP Latency using netperf
tcp round robin test (tcp_rr)

• One transaction - 1 byte
from client to server and then
1 byte from server to client

• Test reports # of
transactions / sec.

• Time for one roundtrip = 1 /
of transactions per second

• On server run “netserver”

On client run “netperf –H
<server_ip> -t TCP_RR –l
<test duration>”

20

Connection
Establishment

Syn + ACK

Syn

ACK

Transaction

Transaction

1 byte

1 byte

1 byte

1 byte

Client Serve
r

CPU overhead with NSX

The following sample methodology can be used to determine the CPU
overhead for each feature

21

“NSX introduced VXLAN, Routing and Firewall to the hypervisor. What does this cost
in terms of CPU?”

1
Run a bandwidth test with VMs on VDS (VLAN
dvPG) and record total bandwidth and CPU

Bandwidt
h in Gbps

Total
CPU on
host

18.426 364.46

2 Calculate CPU per Gbps over VLAN
1 19.74

3
Run a bandwidth test with VMs on Logical
Switch (no DLR and no Firewall)

18.185 409.70

4 Calculate CPU per Gbps over VXLAN
1 22.53

CPU overhead with NSX

22

5 Additional CPU for 1 Gbps over VXLAN
compared to VLAN = CPU per Gbps over
VXLAN – CPU per Gbps over VLAN

22.53 - 19.74 = 2.79

6 Additional CPU for 10 Gbps over VXLAN 2.79 * 10 = 27.9

6 Additional CPU for 10 Gbps over VXLAN on a
12 core hypervisor

27.9 * 100 / 1200 = 2.35
%

Similar methodology can be followed to determine additional CPU for
running Routing and Firewall on the host

Test Results

V

M8

CONFIDENTIAL 24 24

V

M1

NSX vSwitch

 Logical Switch

Compute Cluster Compute Cluster

V

M8 V

M1

0

5

10

15

20

64 512 1500 32k 64kS
e
n

d
 t

h
ro

u
g

h
p

u
t

in

G
b

p
s

TCP Message Size

- Line rate traffic (~18Gbps) with 2
NICs per host with VXLAN

- Additional CPU for VXLAN traffic
between hosts is ~3% of CPU.

0

2

4

6

8

10

12

14

64 512 1500 32k 64k

*A
d

d
it

io
n

a
l

C
P

U
 %

p

e
r

G
b

p
s

TCP Message Size

Logical Switching

*Y axis shows % of additional CPU overhead as compared to
same baseline tests performed on VLAN based networks.

Summary

Summary

• RSS support is required in NIC and vSphere driver to receive line rate
VXLAN traffic on a 10 Gbps NIC.

• TSO for VXLAN traffic support on NIC allows a hypervisor sending
traffic to conserve CPU cycles by offloading TCP segmentation to the
PNIC.

• Check with NIC vendor for TSO and RSS driver support – may need
an async driver!

26

