
NETWORK
AUTOMATION A PRACTICAL APPROACH

MATT GRISWOLD
CTO, UNITED INTERNET EXCHANGE
matt@unitedix.net

● Quick ideals

● Getting your hands dirty

Questions welcome anytime

WHAT WE’LL DISCUSS

Some of the most important things in automation:

● Testing

● Logging

● Versioning

WHAT WE’LL IGNORE

● Lots of homebrew tools

● Networks are so drastically different, hard to do a
complete one size fits all package

● Frequently "start from scratch" and just reuse scripts
and templates (from a central repo)

CURRENT STATE

The Unix philosophy, originated by Ken Thompson, is a set
of cultural norms and philosophical approaches to
minimalist, modular software development.*

*token Wikipedia copy / paste

UNIX PHILOSOPHY

SEPARATION OF CONCERNS

 DATA

 LOGIC

 DEPLOYMENT

IF YOU’RE FETCHING DATA...

Fetch data and write it.

IF YOU’RE BUILDING A CONFIG...

Take existing data and build the config.

IF YOU’RE PUSHING TO A DEVICE...

Take a text file and put it on a device.

SEPARATION OF CONCERNS

SEPARATION OF CONCERNS

● Data can be validated to be correct

● Data can be reused in many different places—including
some you haven't thought of yet

Logic without data in it...

● Concise code

● Unit test with example data

DO ONE THING AND DO IT WELL

● Easy to understand and modify code

● Easier to unit test

*Please do not integrate your network automation with systemd

"Write programs to work together. Write programs to
handle text streams, because that is a universal interface."

– Doug McIlroy

In this case, don't worry as much about streaming from one
to the other, but rather writing data and reading data

UNIVERSAL INTERFACES

● Do: use bgpq3 -j to output json to a file

○ easy to validate that the data you have is correct
○ any other process can read and use that data

EXAMPLE: BGPQ3

● Do: use API to query records and write to a file

○ Easy to validate that the data you have is correct
○ Any other process can read and use that data

○ If the API has version changes, it's easy to make changes, test
only that, move on

EXAMPLE: PEERINGDB

● Do: add only customer data to a data source

○ Later processes can all reread this data to do things

EXAMPLE: ADDING A CUSTOMER

● Easy way to turn data into config

address {{ host.loopback.ip }}/32;

TEMPLATING

Read from a directory—no need for one process to try to
build a whole config.

config/$hostname/00-system.conf
config/$hostname/10-bgp.conf
config/$hostname/10-interfaces.conf

BUILDING CONFIGS

Separate push from config building

● Allows use of many tools to build config snippets
● Allows manual overrides if needed
● $push_config is a script that only takes pre-generated

text files and puts them on a router

BUILDING CONFIGS

One-offs

● Refrain from {if == $hostname},
● Instead, use extra_config/$hostname.conf

○ Separates logic from data
○ Keeps templates clean and simple

BUILDING CONFIGS

● Small, sharp tools are easy to unit test

● Take input, produce output

○ script that fetches data is tiny, check data, write it
○ script that uses logic to build configs

○ script to push to a device, only job should be taking generated
text and putting it on a machine

○ easy to write multiple scripts for different devices

TESTING

● Test on dev machine; virtual network
● Don't deploy to everything at once
● Version config and log diffs
● Human-controlled deploy—magical "automated"

deploys save little time and can be disastrous
● Key auth—it's 2016, stop using passwords!

DEPLOYMENT

● Engineer-controlled

○ Triggered by engineer
○ Stores data in YAML/git
○ Deploy via ansible, puppet, chef

● Customer-controlled

○ Triggered by customer or any outside input
○ Stores data in a database
○ Deploy via custom real time software

AUTOMATION ENVIRONMENTS

NOTE: build_acl_config is a small reused component

● push_acl (minus logging, testing, etc)

○ Finds customer
○ Looks up switch information
○ Looks up mac address and blackhole routes
○ build_acl_config > tmpfile
○ Push tmpfile to devices

EXAMPLE: CHIX L2 ACLS

Used by:

● Engineer provisions customer, one of the steps calls the
script to provision the ACL

EXAMPLE: CHIX L2 ACLS

Used by:

● Customer updates MAC address via website

○ Writes to DB
○ Then triggers

■ push_acl --asn=33713

EXAMPLE: CHIX L2 ACLS

Used by:

● Customer adds blackhole route via BGP Community

○ Bird outputs to script that updates DB
■ add_blackhole --asn=33713 127.0.0.1/32

○ Then triggers
■ push_acl --asn=33713

EXAMPLE: CHIX L2 ACLS

https://github.com/20c/ngage

● Evolved from internal tools

NGAGE

Usage: ngage [OPTIONS] COMMAND [ARGS]...

Commands:
commit
diff
push
rollback
save

NGAGE

ngage push 00-system.conf --user=root

Prompts for password

FIRST-TIME DEPLOY

HOW TO START

Create a git repo

● Get a copy of your current config

○ RANCID
○ ngage save

Save as config/$hostname/00-starting.conf

HELPER SCRIPTS

bin/diff.sh

#!/bin/bash

hostname=$1
shift

HELPER SCRIPTS

if test -z "$hostname"; then
 echo "usage, $0 <hostname> [OPTIONS]"
 exit 1
fi

ngage push --diff --no-commit $hostname
gen/$hostname/* $@
ngage rollback $hostname

HELPER SCRIPTS

bin/push_edge.sh

#!/bin/bash

hosts="edge0 edge1"

for hostname in $hosts; do
 ngage push --diff $hostname gen/$hostname/* $@
done

HOW TO START

Play around with config.

ngage push --diff --no-commit config/dev0/00-starting.conf

● Import all device config
● Commit
● Use favorite text editor
● Profit?

prod/group_vars/ch2/customer.yml

customer_ports:
 - name: office vlan
 cust_id: 11230
 ports:
 - vlan_id: 1230
 prefixes:
 - 10.243.122.0/29
 switch: agg0
 intf: ge-0/0/2

ADDING CONFIG

{% for cust in customer_ports %}
{% for port in cust.ports %}
{% if inventory_hostname_short == port.switch | default() %}
{% do cust_vlans_made.append(port.vlan_id) %}
interfaces {
replace:
 {{port.intf}} {
 description "Cust: {{cust.name}} ID{{cust.cust_id}}";
 unit 0 {
 family ethernet-switching {
 interface-mode access;
 vlan {
 members {{port.vlan_id}};
 }
 storm-control cust_default;
 }
 }
 }
}

ACCESS SWITCH

{% for intf in intf_to_core | default() %}
interfaces {
 {{intf}} {
 unit 0 {
 family ethernet-switching {
 vlan {
 members [{{cust_vlans_made | join(' ')}}];
 }
 }
 }
 }
}
{% endfor %}

ACCESS SWITCH

{% for cust in customer_ports %}
{% for port in cust.ports if port.prefixes is defined %}
 cust-{{cust.ncid}}-{{port.vlan_id}} {
 description "{{cust.name}} ID{{cust.ncid}}";
 vlan-id {{port.vlan_id}};
 routing-interface irb.{{port.vlan_id}};
 }

EDGE ROUTER

{% for cust in customer_ports %}
{% for port in cust.ports %}
 policy-options {
 prefix-list cust-{{cust.cust_id}}-{{port.vlan_id}}_allowed {
{% for ip in port.prefixes | default() %}
 {{ip}};
{% endfor %}

EDGE ROUTER

firewall {
family inet {

filter cust-{{cust.cust_id}}-{{port.vlan_id}}-in {
term prefixes {

from {
prefix-list {

 Cust-{{cust.cust_id}}-{{port.vlan_id}}_allowed;
}

}
then accept;

}
}

}

EDGE ROUTER

 unit {{port.vlan_id}} {
 description "Cust: {{cust.name}} ID{{cust.cust_id}}";
 family inet {
{% for ip in port.prefixes %}
{# use first in a /31 #}
{% if ip | ipaddr('prefix') == 31 %}
 address {{ip | ipaddr('0')}};
{% else %}
 address {{ip | ipaddr('1')}};
{% endif %}

EDGE ROUTER

address {{ip | ipaddr(vrrp_idx)}} {
vrrp-group 1 {

virtual-address {{ip | ipaddr(1)}};
priority {{102 - vrrp_idx}};
advertise-interval 1;
authentication-type simple;
authentication-key "9SECRETYO”;

}

EDGE ROUTER

 group customer {
 type external;
{% for peer in bgp.group.customer.neighbor %}
replace:
 neighbor {{peer.ipv4}} {
 import as{{peer.asn}}-in;
 family inet {
 any {
 prefix-limit {
 maximum {{peer.max_prefix}};
 teardown;
 }
 }
 }
 export as{{peer.asn}}-out;
 peer-as {{peer.asn}};
 }

EDGE ROUTER

matt@unitedix.net
https://github.com/inex/IXP-Manager
https://github.com/20c/django-ixpmgr

QUESTIONS / COMMENTS?

NETWORK
AUTOMATION A PRACTICAL APPROACH

MATT GRISWOLD
CTO, UNITED INTERNET EXCHANGE
matt@unitedix.net

