Egress traffic controller using
Telemetry and Service Layer APls

Mikhail Korshunov
Technical Marketing @ Cisco SP
May 10t 2018

VWhat Should a Controller Look Like?

- Flexibility

- Scale the development process

- Run-time Extensibility & Modularity

- Adapt to data schemas (models) discovered in the network

- Performance & Scale

Egress controller Use Cases

- Open platform for network programmability;
- Users/contributors can add value at any level;
- Enables controller capability for any network size and scale;

- Tool independent, flexible in stack;

.
TOOLS

Egress controller High Level Structure

=2

Topic: | Topic: Topic:
monitor event s | bus_logic

collector | processor Layer AP

[[Telemetry | [Telemetry] Service

Slicing - Telemetry

- New approach to get insights about your network.
- Push, not pull
- Data-Model driven

- Analytics ready, a lot of open sourced tools to store and work with
received data.

- OpenConfig models supported across vendors:
http://www.openconfig.net/projects/models/

http://www.openconfig.net/projects/models/

Slicing - Telemetry #2

For controller we will stream models from rib (openconfig-rib-bgp-
tables) and interfaces (openconfig-if-ip). Streamed data will go

Into collector for normalization.

Updated: 12-19-2017

network routing routing interfaces
instance policy auth
‘ IPv[ln] | a
routing mpls sr pbr

tables protocols
+VRFs

lacp

is-is ospf_v2 local bgp

rsvp/te

aggregate static

OpenConfig models

device

stp

platform

https://github.com/openconfig/public/tree/master/release/models

Slicing - Data bus - Kafka

Kafka is Distributed Streaming Platform

» Publish and Subscribe to streams of
records

» Fault tolerant storage

» Process records as they occur

Kafka offers:

Very high performance
Elastically scalable

Low operational overhead
Durable, highly available

& Kafka

Slicing — Data bus - Kafka

Producer . Producer J

o
0
.
0
0
.
‘e
.

Consumer J “.. Consumer J

Slicing - Data bus - ZooKeeper

Apache ZooKeeper is an effort to develop
and maintain an open-source server
which enables highly reliable distributed
coordination.

Z00Keeper maintaining configuration
information, naming, providing distributed
synchronization, and providing group
services.

Slicing - Intent - Craft you own app

- We will use Python and Flask as a " pgthon

popular choice and easy to
start solution.

- Service Layer APIs would be
utilized to trigger action.

web development,
one drop at a time

« Pub/Sub mechanism available

Via plp from flask import Flask
app = Flask(__ _name)

@app.route('/announce')

def announce_routes():
controller.trigger(routes)
return "Routes announced!"

if name == ' main_':
app.run()

http://flask.pocoo.org/

Slicing - Closing the Loop

There are multiple ways to close the loop and initiate action to
program the device:

Netmiko / NAPALM - unified across multiple vendors.
Simplification compare to traditional paramiko connection.

NETCONF / YANG - apply model directly on the box;
Configuration management tools: Ansible, Puppet or Salt.

RIB AP| - used in controller example. Lowest level
communication.

Network Device Programmability

Model-Driven Manageability

Controller Orchestrator

Management

Applications/Protocol Stack
BGP, ISIS, LDP, SR, L2 Protocols

Service Adaptation

[HW/Data Plane]

Service-Layer APIs

Controller Orchestrator

Management
Applications/Protocol Stack
BGP, ISIS, LDP, SR, L2 Protocols

Service Adaptation
[HW/Data Plane]

Slicing = Agent code to program the box 1/3

def route_operation(channel, oper):
Create the gRPC stub.
stub = sl_route_ipv4 pb2.beta create_ SLRoutev4Oper_ stub(channel)
Create an empty list of routes.
routelList = []
Create the SLRoutev4Msg message holding the SLRoutev4 object list
rtMsg = sl route_ ipv4 pb2.SLRoutev4Msg()

Fill in the message attributes attributes.

VRF Name

rtMsg.VrfName = 'default'

Fill in the routes

Create an SLRoutev4 object and set its attributes
route = sl _route_ ipv4 pb2.SLRoutev4()

IP Prefix and length

route.Prefix = (int(ipaddress.ip address('20.0.10.0"')))
route.PrefixLen = 24

Administrative distance
route.RouteCommon.AdminDistance = 2

Slicing — Agent code to program the box 2/3

paths = []

Create an SLRoutePath path object.

path = sl route_common_pb2.SLRoutePath()

Fill in the path attributes.

Path next hop address

path.NexthopAddress.V4Address = (int(ipaddress.ip address('10.10.10.1")))
Next hop interface name

path.NexthopInterface.Name = 'GigabitEthernet0/0/0/0'

Add the path to the list
paths.append(path)

Let's create another path as equal cost multi-path (ECMP)
path = sl route common_ pb2.SLRoutePath()
path.NexthopAddress.V4Address = (

int (ipaddress.ip address('10.10.10.2"))

)
path.NexthopInterface.Name = 'GigabitEthernet0/0/0/0'

paths.append(path)

Slicing — Agent code to program the box 3/3

path = sl_route_common_pb2.SLRoutePath()
path.NexthopAddress.V4Address = (
int(ipaddress.ip address('10.10.10.2"))

)
path.NexthopInterface.Name = 'GigabitEthernet0/0/0/0'

paths.append(path)

Assign the paths to the route object

if oper != sl _common_types_ pb2.SL_OBJOP_DELETE:
route.PathlList.extend(paths)

Route injected!

routeList.append(route)

Done building the routelList, assign it to the
#
rtMsg.Routes.extend(routeList)

rZute message.

Make an RPC call

Timeout = 10 # Seconds
rtMsg.Oper = oper # Desired ADD, ATE, DELETE
response = stub.SLRoutev4Op(rtMsg, Timeout)

operation

Scalability

- Load on each component of the controller could be distributed;
- Such architecture decoupled by design;
- Python could be replaced to more performant language if needed:;

- Kafka available in cluster configuration.

Demo & components walkthrough

Summary

- Controller is built from open-source tools;
- You can introduce new logic and complicate rules as you grow;
- Components are independent from each other;

- Better monitoring -> better sleep.

Resources

- Streaming telemetry -
http://www.openconfig.net/projects/telemetry/

- |OS-XR telemetry - https://xrdocs.github.io/telemetry/
- |OS-XR Service Layer API - https://xrdocs.github.io/cisco-service-

laver/
- Apache Kafka - https://kafka.apache.org/

- Apache Zookeeper - htips://zookeeper.apache.org/

http://www.openconfig.net/projects/telemetry/
https://xrdocs.github.io/telemetry/
https://xrdocs.github.io/cisco-service-layer/
https://kafka.apache.org/
https://zookeeper.apache.org/

