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Computer Networks and ... Chemistry?

I Don’t re-invent the wheel
I Work smarter, not harder
I ...and other such cliches
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Let nature do some of the work

I Packet flow in a network has a beautifully natural analogue living
inside chemical kinetics and reaction mechanisms

I Like particles or molecules, we have microscopic (or even quantum)
behavior and macroscopic dynamics

I Currently, we notice issues in trying to scale microscopic (and
generally more accurate) analysis. It quickly becomes intractable.

I Smooth it away! (Comes at a steep cost.)
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Overview of the talk

I Discuss the use of the Law of Mass Action in chemical kinetics in
creating an artificial packet chemistry

I Note current applications of this model
I Briefly discuss limitations and future research
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Background
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LoMA in Chemistry

If we have a chemical reaction with reactants A1, . . .Am , and products
B1, . . .Bn , we can express the reaction (simply) as

A1 + A2 + . . .+ Am −→ B1 + B2 + . . .Bn

Example

HCl + NaOH −→ NaCl + H2O

(plus lots of heat...)
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LoMA in Chemistry

In a very simple reaction A −→ P , the rate this reaction occurs is a nice
differential equation in terms of the concentration of the reactant:

−dcA
dt

= k · cA

where cA is the concentration of the reactant A.

Put simply
The rate at which the reactant disappears is proportional to the current
concentration.
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LoMA in Chemistry

For a reaction with multiple reactants, the rate of a forward reaction is
proportional to the concentrations of the reactants:

Law of Mass Action
rf = kf cA1 · · · cAm

and this concept is what we’re going to use.
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Queueing Analogue to Chemical Kinetics

k2

k1 X

Y W

Z

Y Wλ2 λ2

X Zλ1
µ1 = k1cX cY

µ2 = k2cY ν2 = k2cY

ν1 = k1cX cYλ1

k1

k2

Description
Two packet queues served by two servers, the top extracts a packet from
both queues.

Rachel Traylor, Ph.D. | c© The Math Citadel



10

Queueing Analogue to Chemical Kinetics

k2

k1 X

Y W

Z

Y Wλ2 λ2

X Zλ1
µ1 = k1cX cY

µ2 = k2cY ν2 = k2cY

ν1 = k1cX cYλ1
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k2

Notation

λi − arrival rate/inflow µi − service rate
νi − reaction rate cX , cY − concentrations/fill level
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Queueing Analogue to Chemical Kinetics

k2

k1 X

Y W

Z

Y Wλ2 λ2

X Zλ1
µ1 = k1cX cY

µ2 = k2cY ν2 = k2cY

ν1 = k1cX cYλ1
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Production rate
The reactions are coupled, which can make analysis and scheduling
complicated due to the coordination required here.
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Assumptions

I Non-work-conservation: the server may stay idle even if the queue
contains packets

I M/M/1 queues (noteworthy for mathematical analysis)
I FIFO queueing discipline
I equilibrium/steady state
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What is being accomplished

I natural synchronization and scheduling
I ability to handle competing servers
I indirect communication through fill level of the buffer
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Overview of Scheduling (Disperser example)

I LoMA competitor to Push-Sum
I Work-conservation would

cause bottlenecking at n2

I Non-work conservation allows
for the goal to be achieved:
calculating an average

I No symbolic computation: the
result emerges in equilibrium
from dynamic interaction of
packet flow
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Artificial Packet Chemistry

Def: Artificial Packet Chemistry

PC = (G,S,R,A)

I G = (V ,E ) – graph that represents the computer network nodes,
where V = {n1, . . . , n|V|} are nodes, and E = {e1, . . . , eE} are
unidirectional network links

I S = ∪i∈V{Si} – lists queue instances of node i . Analogous to
molecular species

I R = ∪i∈V{Ri} – gives flow relations among local queues. Analogous
to reaction rules.

I A = reaction algorithm
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Example

I G = (V ,E ), where V = {n1, n2, n3, n4} and
E =
{n1n2, n2n1, n2n3, n3n2, n2n4, n4n2, n3n4, n4n3}

I S = {X1,X2,X3,X4}

I R = {ra,b : Xa → Xb :
ab ∈ E}

I A = Law of Mass Action
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Formal Analysis Techniques

I Microscopic stochastic analysis – Chemical Master Equation
(McQuarrie, 1967)

I Deterministic analysis (fluid approximation) can be generated from
the topology of the corresponding reaction network

ẋ = λ− kx with stable fixed point x̂ =
λ

k

I Kirchhoff’s current law
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Formal Analysis Techniques

I Transient analysis – Metabolic Control Analysis or signal/control
theory approaches

I Mesoscopic analysis(estimation of the fill level variance)- Chemical
Langevin Equations or linear noise approximation

I General stability analysis – Deficiency Zero Theorem, Chemical
Organization Theory
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Scheduler

I Each network node has its own scheduler to computer the next
occurrence time of each r ∈ Ri in its local node (processing packets)

I Sorts events into a priority queue, then executes when the first event
occurs

I Difficulty: dynamically react and schedule as packets come and go
I Next Reaction Method (Gibson/Bruck): O(n log(n)) time
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Scheduler

I The rate constants and fill levels drive the ordering of events
I No timestamp tagging required, because the service rate is

proportional to fill level of dependent queues.
I Interleaving and dynamic scheduling are automatic, in the same way

chemical reactions (exothermic) happen
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Going up a layer: Chemical Control Plane

I Instead of sending packets through a complex queuing network to
shape packet flow, create a control plane that handles flow control
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Options

I We can use molecular reactions to naturally create shapes (e.g.
low-pass filter with unimolecular reaction)

I Rate limiting via virtual "enzymes", following the Michaelis-Menten
equation

kwcX cE = kscEX

where E are enzyme molecules and EX are enzyme-molecule
substrates. Then

µ = ks(cX + cE )
cX

ks
kw

+ cX

giving a hyperbolic saturation curve that approaches the M/M/1
queueing behavior in the limit.
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Dynamic Self-Sorting via Fraglets

I Fraglets (Meyer/Tschudin, 2003) is a language that allows us to
program a reaction network.

I Each packet (molecule) is a string called a fraglet
I contains instructions and data
I allows self-sorting into queues
I tightly coupled with mathematical models
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Congestion Control

Figure: Meyer/Tschudin (2011)

Chemical Equivalent to TCP Reno
I transmission rate controlled by pace-maker molecules (enzyme) R
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Limitations

I infinite capacity assumption
I M/M/1 type-behavior is the "link" (too simplistic?)
I as always, the assumption of independence among the packets

themselves
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Future Directions

I fuller exploitation of results from chemical physics
I Petri-net models for more complex networks
I finite capacity
I generalized models (M/D/1, G/M/1, heavy traffic perturbation)
I full implementation of reaction designs to facilitate other protocols
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Conclusion

I An injection of lateral thinking and creativity, with huge potential
I A testament to the value of interdisciplinary and academic

collaboration with the private sector
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