Neglecting Automated Testing

Or: How To Take Down Your Network In 3 Easy Steps

Anthony Miloslavsky
¥ @permitanyany

Cumulus Networks SE

Define Some Common Terms

Why Infrastructure As Code (laC)?

Why Testing?

Why CI/CD Pipelines?

How Do We Bridge The Gap Between Scripting And 1aC?

A Bit Of History

Why |s Networking So Far Behind?
» Shared infrastructure / blast radius
= [f it ain’t broken...don't fix it
= High risk, low reward culture

» |nnovation overshadowed by fear

ROM: Svstem Bootstrap, Version 11.1(17) 44

uptime is 15 v

= 4
nUsSt
o

A Bit Of History

PLIS AN

expect python
scripts scripts playbooks

Why The Move Towards laC?

Scripts/Playbooks
» |mperative Approach

= Minimal layers of abstraction

A

python

A

ANSIBLE

Why The Move Towards laC?

Infrastructure As Code

Declarative Approach
Source Of Truth

Scalability

Readability & Collaboration
Reusability

: to Serverl

: to Server?2

10.10.10.10
11.11.11.11

Why The Move Towards laC?

@ SALTSTACK

ANSIBLE

End Goal

Provision

Replace

Us And Them

* @ 15 Grafana

docker ANSIBLE

Continuous Integration Continuous Deployment

Challenges Of Testing

Does This Translate To Networking?

Development
Environment

Production
Environment

Challenges Of Testing

This Looks More Realistic

Lab

‘/ Production
o Environment

24

Levels Of Testing

Unit Testing

= Breaking down the problem into small pieces so that it be tested
quickly

- “m adding a vlan” — “Let’s confirm that the vlan was added successfully”

- “'ve added a new BGP prefix to my prefix list” — “Let’s confirm that I'm
advertising/receiving it”

Levels Of Testing

Integration Testing
= Verify how various components are interacting with each other

- “I'm adding a new vlan” — “Let’s confirm that spanning tree looks healthy globally”

- “I've added a new BGP prefix to my prefix list” — “Let’s confirm that routing looks
healthy globally”

Unit Testing

@ SALTSTACK

ANSIBLE

Parse
Device

Config

make my
ntp server

1.1.1.1

Is My NTP
Server
1.1.1.17

Integration Testing

A

@ SALTSTACK

Integration Testing

Generic & Reusable environment wide tests
= Overall L2/L3 Protocol Health

MTU Mismatches

of routes/mroutes is in "normal” range

NTP status

...Insert your favorite battle scar here

CI/CD Approach

CI/CD Approach

: to Serverl

: to Server2

©

10.10.10.10
11.11.11.11

portl:
description: to Serverl
port2:
description: to Server?2
bgp:
as: 12345
netighbors:
- 10.10.10.10
- 11.11.11.11
ntp:
servers:

interface portl
description {{ portl.description }}

interface port2
description {{ port2.description }}

router bgp {{ bgp.as }}
{% for ip in bgp.neighbors -%}
neighbor {{ ip }} remote-as 4321
{% endfor %}

- deploy

- deploy
: deploy

- ansible-playbook main.yml

interface portl
description {{ portl.description }}

interface port2
description {{ port2.description }}

router bgp {{ bgp.as }}
{% for ip in bgp.neighbors -%}
neighbor {{ ip }} remote-as
{% endfor %}

: Push Config

: leaf.j2

: magilcAPI

A

ANSIBLE

: Check BGP State
show bgp summary | grep "state" | grep -v "Established"
: bgp_check

e : Evaluate BGP State

ANSIBLE

"BGP Is Currently In A Bad State"
: bgp_check.rc ==

- deploy
= tesit

deploy
: deploy

ansible-playbook main.yml

deploy
: test

ansible-playbook test.yaml

Is This Good Enough?

@ SALTSTACK

ANSIBLE

Cl/CD Approach

Pre-change testing
= Linting
» Pre-commit diff
= Ansible --check-mode

» Prediction Tools (Batfish, Veriflow, Forward Networks)

= Simulation

CI/CD Approach

@ SALTSTACK

ANSIBLE

CI/CD Approach

Pre-change testing

= Simulation

sssssss

27

Levels Of Testing

Simulation

@ SALTSTACK

ANSIBLE

(¥ saLTsTACK

A

ANSIBLE

Simulation

Microsoft CrystalNet

Root Cause Proportion Examples CrystalNet Coverage | Verification Coverage
Software Bugs 36% bugs in routers, middleboxes, management tools v X
Config. Bugs 27% wrong ACL policies, traffic black holes, route leaking v v
Human Errors 6% mis-typing, unexpected design flaws v X
Hardware Failures 29% ASIC driver failures, silent packet drops, fiber cuts, power failures X X
Unidentified 2% transient failures X X

Table 1: Root causes of O(100) significant and customer-impacting incidents in our network (2015 - 2017).

Simulation

What's Required?
= Laptop/Hypervisor/Bare Metal/Public Cloud
= Multi-vendor orchestrator (Vagrant, EVE-NG, GNS3)

Is Network Simulation Ready For Primetime?
= All vendors support some version
» VMs and Containers
» Bloated Images
= Feature Parity
= Simulation Speed

CI/CD Recap ceo

build
- test
destroy
- deploy

¢ build

cd cicd-simulate

‘ A vagrant up leaf@l leaf02

ansible-playbook playbook.yml -1 hosts.yml
ansible-playbook test.yml -1 hosts.yml

: destroy
cd cicd-simulate

vagrant destroy leaf@l leaf02

: deploy

ansible-playbook playbook.yml -1 hosts.yml
ansible-playbook test.yml -i hosts.yml

Observations/Lessons Learned

» Break the problem up into small chunks
- Pod architecture helps here
- Separate inventory files

= Are network engineers ready for automated CD?
= Separate branch for simulation
= New tests stem from battle scars

» Orchestration scripts — It's ok to write one-off testing

» |Large/impactful changes — It's ok to write one-off testing

