Mobile User Plane Evolution

Distributed/Lite/Integrated User Plane Function (UPF)

ChiNOG10, 10/6/2022

Jeffrey Zhang, Juniper Networks

Agenda

- Mobile User Plane Background
- RAN Centralization and CN Distribution
- Alternative User Plane Implementation/Deployment
- One Step Further in 6G
- Summary

MCN & User Plane

- A Mobile Communication Network (MCN) includes RAN and CN
 - Radio Access Network (RAN) and Core Network (CN)
 - Connected over a transport network
- Planes in an MCN
 - User Plane: data plane that carries mobile user traffic
 - Spans from User Equipment (UE, or mobile device) to a User Plane Function (UPF) in CN
 - Control Plane: to set up resources needed for mobile communication
 - Management Plane & Synchronization Plane

RAN & Centralization Trend

- RAN: A network of radio access components that terminate the air interface from UEs
 - NodeB \rightarrow eNB \rightarrow gNB
- D-RAN: Distributed and self-sufficient standalone NodeB/eNB
- C-RAN: Distributed gNB-DUs separated from centralized gNB-CUs
 - DU: Distributed Unit
 - CU: Centralized Unit
- D-RAN \rightarrow C-RAN

CN & Distribution Trend

- CN: the brain of an MCN; to enable and implement mobile services
 - With control plane and user plane components
 - Not a topological concept (anymore)
- CUPS: <u>Control-plane</u> <u>User</u> <u>Plane</u> <u>Separation</u>
 - Allows control plane and user plane components to scale independently
 - Allows the components to deploy independently
 - Centralized control plane components (SMF/AMF and others in 5G)
 - Distributed user plane components (UPF in 5G)
 - A CN concept that has been extended to RAN as well
 - gNB-CU \rightarrow gNB-CU-CP + gNB-CU-UP
- UPFs are being distributed close to gNB-CU
 - For MEC or optimized local traffic (between UEs or to/from local DN or Internet peering)
 - MEC: Multi-access Edge Computing
 - Distributed UPFs meet centralized gNB-CU
 - Collocated in Edge DC (or even Far Edge DC) maybe running on the same server

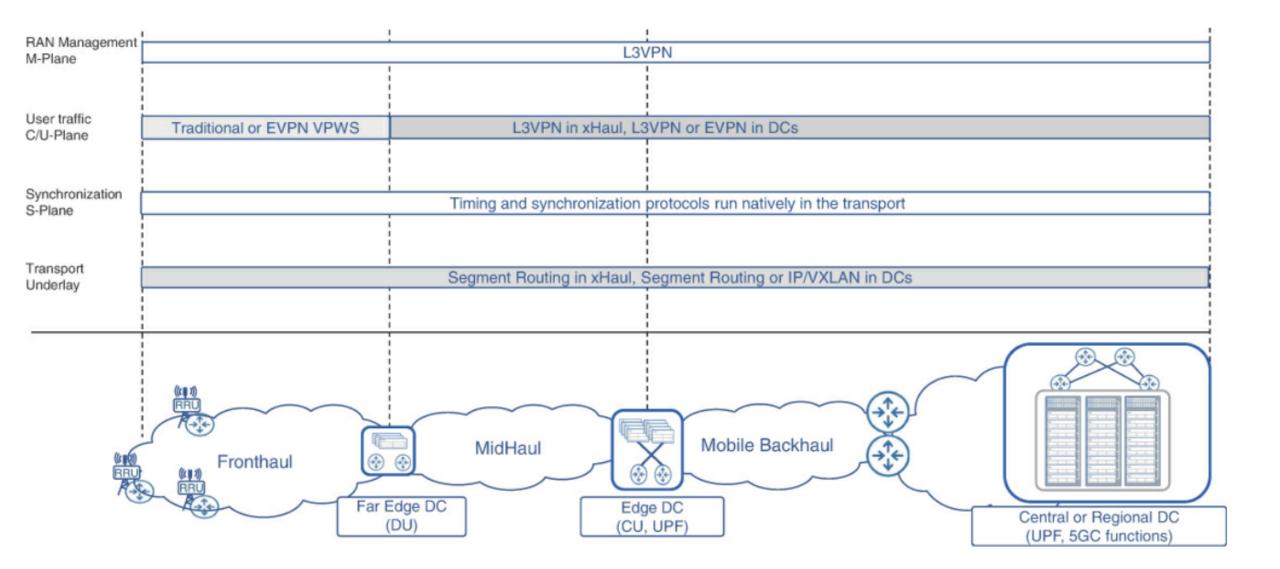


Figure 8-14 from the book "Network Architect's Guide to 5G" (ISBN-13: 978-0-13-737684-1)

Looks Familiar ...

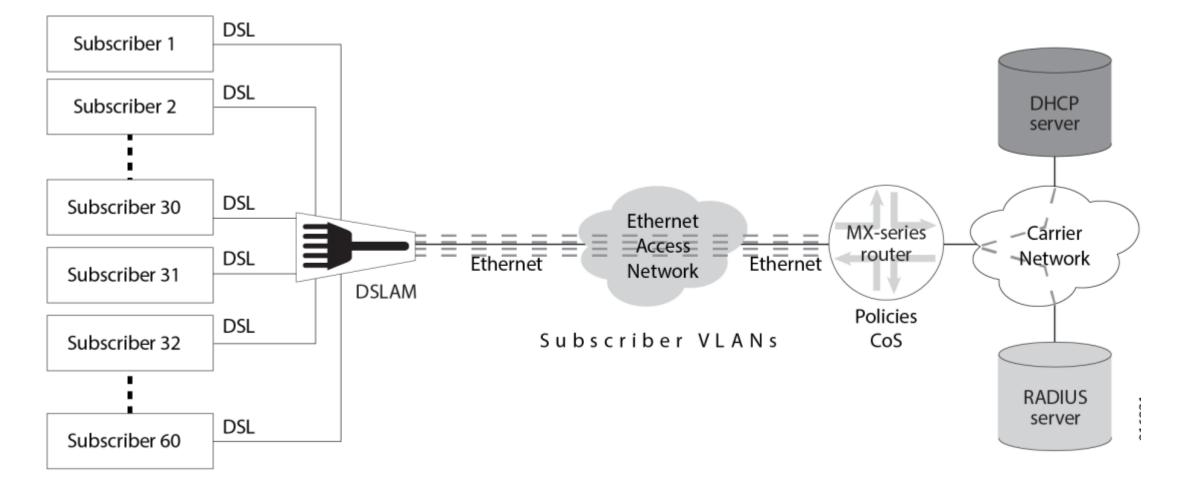


Figure 2 of Juniper's "UNDERSTANDING SUBSCRIBER MANAGEMENT AND BNG"

And This ...

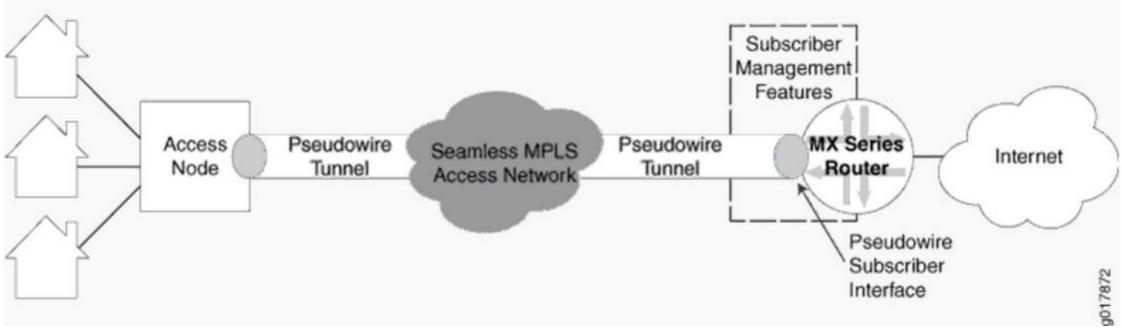
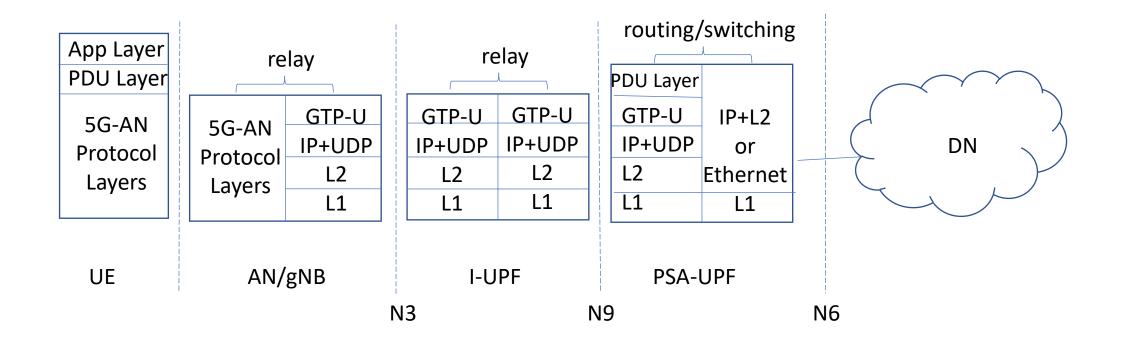
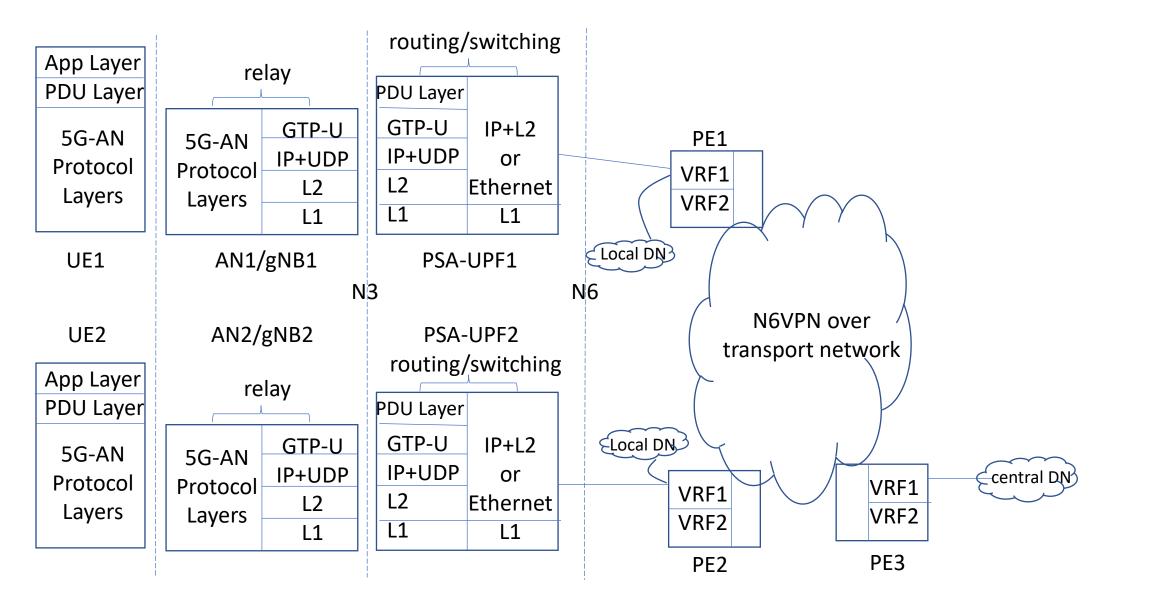



Figure 4 of Juniper's "UNDERSTANDING SUBSCRIBER MANAGEMENT AND BNG"

- eNB/gNB are like the DSLAM or Access Node in the above pictures
- UPF are like the BNG (Broadband Network Gateway)

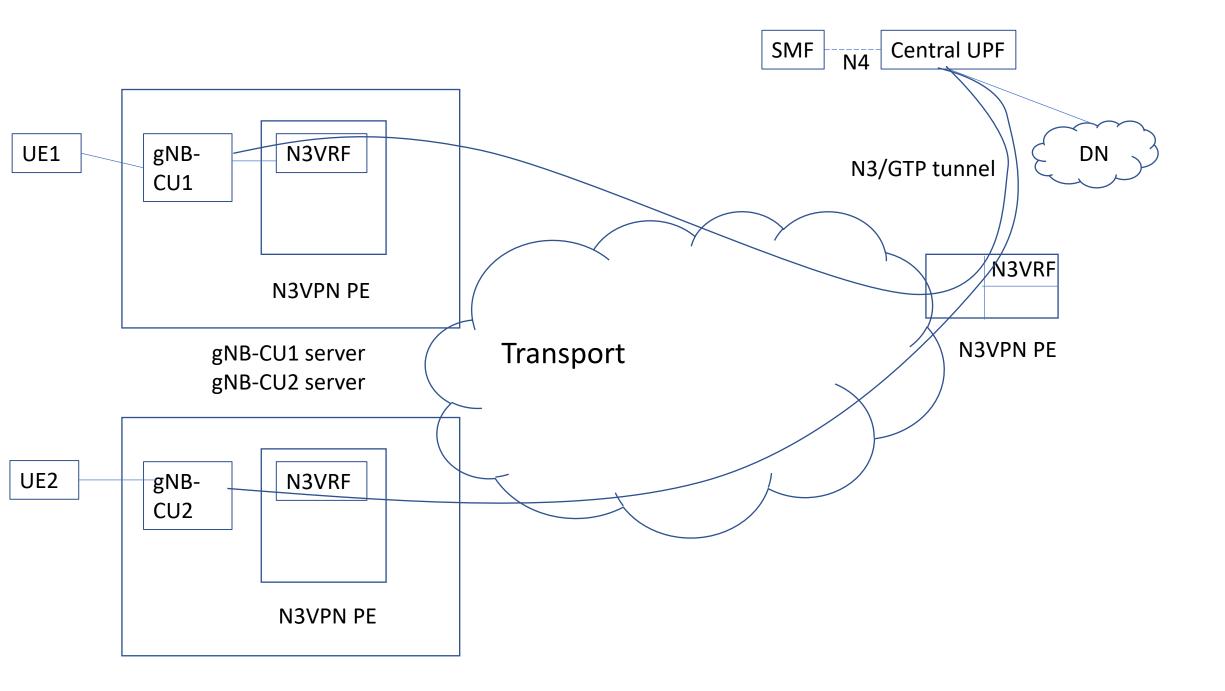
User Plane Components

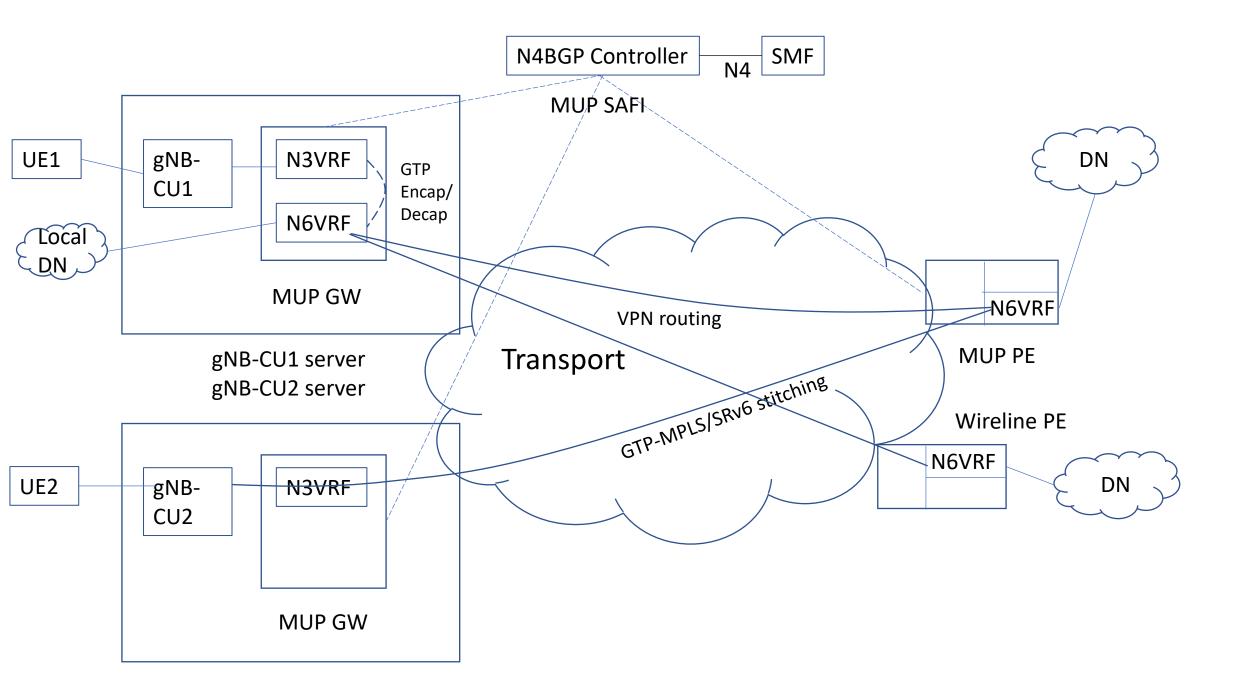
- UPF: the CN component of the User Plane
 - Like a BNG router; route/switch to/from Data Network (DN) via N6 interface
 - Traditional UPFs are implemented with PDR/FAR rules from N4 signaling
 - PDR: Packet Description Rule FAR: Forwarding Action Rule
 - Functionality-wise they route/switch traffic based on IP/Ethernet header
- gNB: the RAN component of the 5G User Plane
 - Terminate air interface
 - Relay IP/Ethernet traffic between UE and UPF
 - Over GTP-U tunnels (N3 interface/tunnel)
 - Each tunnel is for a session; identified by <gNB, gNB-TEID, UPF, UPF-TEID>
 - TEID: Tunnel endpoint ID (like an MPLS label)
- N3 tunneling is over an IP transport that is itself an IPVPN over transport infrastructure



PDU Session: a 5G UE-UPF user plane connectivity for a specific DN PSA-UPF: PDU Session Anchor UPF I-UPF: Intermediate UPF

Recap: 5G User Plane Background


- Traditionally, UPFs are centrally deployed
 - This has the advantage of session continuity when UEs move around
 - They also scale up with dedicated hardware platform
- For MEC, UPFs are distributed close to gNB-CU (an Access Node or AN)
 - This means distributed DNs as well (implemented as VPN N6VPN)
- For C-RAN, gNBs are being centralized
 - Leads to co-located UPF and AN in Edge DC
 - With direct/short link in between or even running on the same server
- N3 tunnel between ANs and UPF are through an IP transport network
 - That is a VPN (N3VPN) over a converged transport infrastructure
 - N3VPN PEs are close to ANs/UPFs (which are N3VPN CEs)

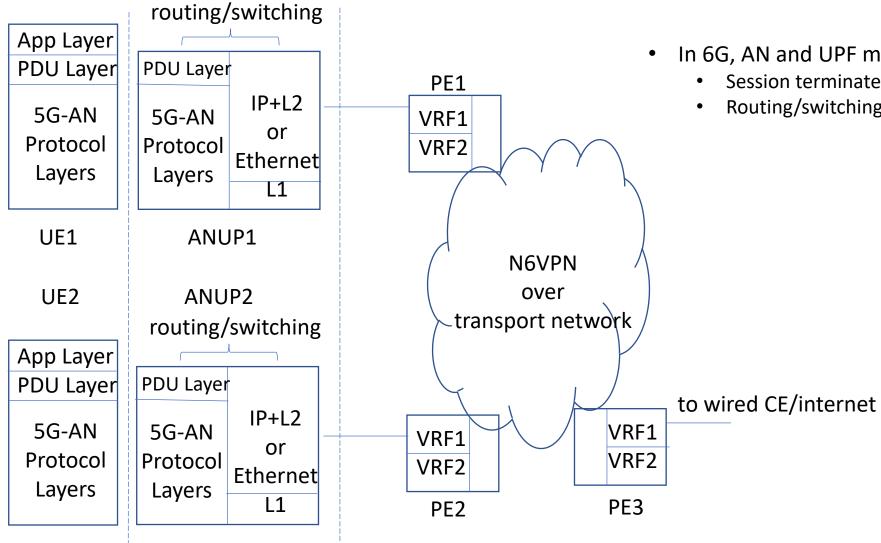

Distributed UPF and DN

Alternative Implementation/Deployment

- Implement distributed UPF as a router/switch
 - Based on N4 or BGP signaling translated from N4
 - Trim off some functionalities that are not needed
 - E.g., billing, LI for some deployment scenarios
 - Referred to as UPF-Lite
- Integrate N3VPN/N6VPN PE function into it
 - Referred to as MUP GW in <u>SRv6 MUP Architecture</u>
 - An SRv6 specific, router based, and partial implementation of Distributed UPF
 - The concept is actually not SRv6 specific

An Alternative View

- The collection of distributed <N4BGP Controller, MUP GWs, MUP PE> appears to the SMF/gNBs as a single/central UPF
 - No change of 3GPP architecture/signaling
 - An alternative to distributed "traditional" UPFs
 - Mobility handled by UE host routes
- This is actually SR-agnostic
 - Works equally well with (SR-)MPLS
- This is so far just for partial UPF functions
 - For complete set of UPF functions, either extend this UPF-lite or just deploy traditional but distributed UPFs


Motivation for UPF-lite

- Alternative to traditional hardware/vendor-tied central UPF
 - Distribution, scale-out
 - Disaggregation, virtualization
- Optimal traffic handling
 - Distributed local routing of UE-UE and UE-DN (Internet/DC) traffic
 - Reduced failure domain
 - Less overhead even when backhauling to a hub PE is needed
 - Previously: GTU-U header + N3VPN header
 - UPF-lite: N6VPN header
- Works for all scenarios but especially good for Fixed Wireless Access (FWA)
 - Not only for MEC
 - FWA dose not require mobility support and only prefix routes are needed
 - FWA does not require rich billing functionalities

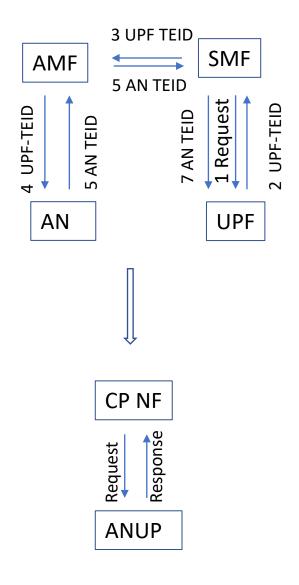
One Step Further in 6G?

- What if, in 6G, AN and UPF are integrated into a single NF (ANUP)?
 - Optionally with N6VPN PE function built in
- A flattened, routing/switching-based architecture
 - ANUP is a router/switch with wireless/wired connections
 - Optionally with N6VPN PE functionality
 - 3GPP/wireless technologies responsible for wireless access
 - Mobility Management, UE authentication/authorization, ...
 - Just like that IEEE technologies are for Ethernet connection
 - And Wi-Fi technologies for Wi-Fi connection to a Wi-Fi router
 - IETF/wireline technologies for the rest
- Consistent for wireline/wireless

Integrated AN/UP in 6G?

- In 6G, AN and UPF may be integrated into ANUP
 - Session terminates at ANUP
 - Routing/switching at ANUP

Not Really A Drastic Change


- Previously, ANs and UPF form a hub-and-spoke VPN
 - UPF is the hub PE and ANs are the spoke PEs
 - GTP-U tunnel corresponds to VPN tunnel (base tunnel label + VPN label)
 - No VRF on ANs because:
 - All UpLink (UL) traffic goes to hub so no IP lookup needed for UL traffic
 - "per-UE" TEID on AN side avoids IP lookup on AN for DownLink (DL) traffic
 - Just like "per-FEC" (vs. per-VRF) VPN label or option-B stitching
 - Of course, centralized N2/N4 (vs. distributed BGP) signaling is used
- We're now just adding VRF on the ANs
 - For MEC purpose (or for optimal UE-UE traffic)
 - Of course, no longer restricted to GTP-U tunneling

Advantages

- Simplified, flattened architecture unified for wireline/wireless
 - Simplified signaling
 - Optimized data plane
- Many 5G special features/procedures are not needed anymore or can be greatly simplified
 - MEC
 - 5MBS
 - LAN-type services
 - ...
- Integrate when desired/feasible, separate when you have to
 - There are still scenarios for separate AN and UPF

Simplified Signaling

- In 5G, N3 tunneling is used between separate AN and UPF
 - Even if they're co-located
 - Multi-step N2/N4/N11 signaling involved
- Since no tunnel is used with a router/switch ANUP:
 - Signaling only needs to tell ANUP which DN a PDU session belongs to
 - It's new signaling, but 6G will have a lot of changes anyway

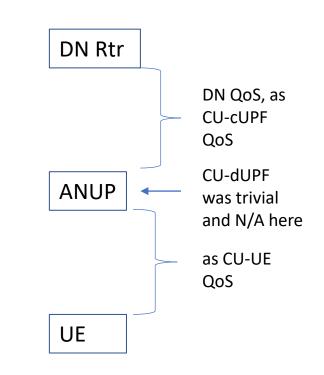
Optimized Data Plane

- Direct/short/internal AN-UPF connection is removed
- GTP-U encap/decap is removed
 - Better throughput/performance
 - Reduced latency

Multicast

- ANUP is a router/switch
 - With wireless connections to UEs and wired connections to DNs
- Multicast DL traffic arrives on ANUP via whatever DN multicast means
 - Ingress Replication, PIM, BIER, P2MP, whatever
 - IETF/wireline technology
 - Then delivered to attached UEs via P2P/P2MP radio bearers
 - 3GPP/wireless technology
- Multicast UL traffic arrives on ANUP and then
 - Delivered to other ANUPs and DN routers via whatever DN multicast means
 - If needed, also delivered to locally attached UEs via P2P/P2MP bearers

MEC


- ANUP is a router/switch
 - With wireless connections to UEs and wired connections to DNs
- No special 3GPP-specific MEC procedure needed at all
 - ANUP routes among DN and UEs directly
 - The DN is a local DN with local MEC resources
 - Application traffic routed to/from local/central resources transparently
 - Identifying/locating resources (via DNS or other means) is a generic function
 - It does not matter if it is wireline or wireless, MEC or not

LAN-type Services

- ANUP is a router/switch
 - With wireless connections to UEs and wired connections to DNs
- No special 3GPP-specific LAN-type service procedure needed at all
 - LAN-type services are IP/E-VPN reinvented anyway
 - ANUP routes among DN and UEs directly
 - The DN and relevant UEs of the same LAN-type service
 - When a LAN-type service span across multiple ANUPs:
 - The DN (most likely implemented as IP/E-VPN) connects them together, or,
 - ANUPs can have IP/E-VPN PE functionality built-in
- Seamless wireline/wireless integration
 - Including EVPN all-active multi-homing via wireline and wireless
 - LAN-type services are reinvented IP/E-VPN anyway

QoS

- The ANUP-UE QoS is still like CU-UE QoS
- The QoS previously between CU and co-located UPF is trivial anyway and with integrated ANUP it is N/A
- The QoS previously related to N3 tunneling (w/o co-location) is now QoS in DN
 - Previously, N3-related QoS is realized through the transport infrastructure
 - Now it is DN (VPN) QoS realized through the same transport infrastructure
- The QoS parameters signaled to ANUP will be used for:
 - QoS between ANUP and UE, and,
 - QoS between DN routers and ANUP
 - DN routing signaling could be enhanced e.g., the UE routes advertised into DN could carry QoS information so that DL traffic will be subject to the desired QoS handling

Will 3GPP Accept Integrated ANUP?

- It seems a natural evolution
 - To people familiar/friendly with IETF/wireline technologies
 - But a big paradigm shift on 3GPP/wireless side
- But the work is to be done in 3GPP
- Trying to get support from mobile operators
 - Socializing the idea first among their IETF/wireline people on mobile side
 - https://datatracker.ietf.org/doc/draft-zzhang-dmm-mup-evolution/
 - Appreciate your feedback and support! zzhang@juniper.net
 - Exploring prototype implementation for demo
- Will bring to 3GPP if we get enough support
 - The work is on 3GPP not IETF side

Summary

- With 5G, traditional central UPFs can be transparently replaced with a collection of <N4BGP controller, MUP GW, MUP PE>
 - Removal of N3VPN; Integration of N6VPN PE function; local routing
- With 5G, gNBs are being centralized while UPFs are being distributed
 - They meet and co-locate in the edge or even far edge DCs
- In 6G, the co-located gNB/AN and UPF function may be integrated into a single function (ANUP)
 - A router/switch with wireless/wired connections
 - Simplified architecture, optimized signaling and data plane
 - Operator's feedback/support appreciated!