
The 16-bit Datacenter
Brandon Ewing

CHI-NOG 10, Oct 2022
www.github.com/bewing/chinog-10

1 / 42

https://www.github.com/bewing/chinog-10/

40% Knowledge Transfer

40% Stuff to think about

Talk Contents

2 / 42

40% Knowledge Transfer

40% Stuff to think about

 20% Please tell me he's not
doing that in prod

Talk Contents

3 / 42

Simplicity

4 / 42

5 / 42

Complexity

6 / 42

Complexity

7 / 42

Complexity

8 / 42

$ wc -l configs/DC1-LEAF1
2130 configs/DC1-LEAF1
$ git diff --color --stat --no-index configs/DC1-LEAF1 configs/DC4-LEAF9
 configs/{DC1-LEAF1 => DC4-LEAF9} | 881 +++++++++ -----------

 1 file changed, 362 insertions(+), 519 deletions(-)

Complexity

9 / 42

Use templates
Same templates for provisioning and configuration
If you aren't pushing configs, at least run audits
Clean up cruft!

Baseline

10 / 42

nodes:
- hostname: dc1-leaf1
 region: dc1
 role: leaf
 aaa:
 - 192.168.3.2
 - 192.168.10.1
 - 192.168.14.10
 addresses:
 Loopback0:
 ipv4:
 - 172.18.4.10/32
 ipv6:
 - "2001:db8::1/128"
 Ethernet1/1:
 ipv4:
 - 10.0.0.0/31
 ipv6:
 - "2001:2b8:1::1/64"
 bgp:
 router-id: 172.18.4.10
 asn: "65534"
 ipv4:
 peer-groups:
 - name: SPINE-LEAF
 outbound-policy: SPINE-TO-LEAF
 inbound-policy: LEAF-TO-SPINE
 neighbors:
 - address: 10.0.0.1
 asn: "65234"
 dns:
 search: warningg.com

Context

11 / 42

$ stat --format "%s" host.yaml
608

12 / 42

$ stat --format "%s" host.yaml
608

608 bytes > 16 bits

13 / 42

DC1-LEAF4 DC4-LEAF9

-ip nameserver 192.168.0.0
-ip nameserver 192.168.100.100
!
-tacacs-server 192.168.3.2
tacacs-server 192.168.10.1
-tacacs-server 192.168.14.10

+ip nameserver 10.240.0.0
+ip nameserver 10.244.100.100
!
+tacacs-server 192.168.14.10
tacacs-server 192.168.10.1
+tacacs-server 192.168.3.2

Boilerplate

14 / 42

Boilerplate

15 / 42

DC1-LEAF4 DC4-LEAF9

ip nameserver 192.168.100.100
!
tacacs-server 192.168.3.2
tacacs-server 192.168.10.1
tacacs-server 192.168.14.10

ip nameserver 192.168.100.100
!
tacacs-server 192.168.3.2
tacacs-server 192.168.10.1
tacacs-server 192.168.14.10

Anycast when possible
Make sure your application withdraws itself if not healthy
Avoid ECMP through policy

Global services with fallbacks if not
If RTT is important, programmatically order them with template logic

Boilerplate

16 / 42

nodes:
- hostname: dc1-leaf1
 region: dc1
 role: leaf
 addresses:
 Loopback0:
 ipv4:
 - 172.18.4.10/32
 ipv6:
 - "2001:db8::1/128"
 Ethernet1/1:
 ipv4:
 - 10.0.0.0/31
 ipv6:
 - "2001:2b8:1::1/64"
 bgp:
 router-id: 172.18.4.10
 asn: "65534"
 ipv4:
 peer-groups:
 - name: SPINE-LEAF
 outbound-policy: SPINE-TO-LEAF
 inbound-policy: LEAF-TO-SPINE
 neighbors:
 - address: 10.0.0.1
 asn: "65234"

Context

17 / 42

2001:db8::ac12:40ac 2001:db8::172.18.4.10
2001:db8::172:18:4:10

Don't Repeat Yourself
Don't have the same info twice (IPv4 Lo0, router-id)
Generate the IPv6 loopback

2001:db8::/64 + 172.18.4.10/32

18 / 42

nodes:
- hostname: dc1-leaf1
 region: dc1
 role: leaf
 router-id: 172.18.4.10
 addresses:
 Ethernet1/1:
 ipv4:
 - 10.0.0.0/31
 ipv6:
 - "2001:2b8:1::1/64"
 bgp:
 asn: "65534"
 ipv4:
 peer-groups:
 - name: SPINE-LEAF
 outbound-policy: SPINE-TO-LEAF
 inbound-policy: LEAF-TO-SPINE
 neighbors:
 - address: 10.0.0.1
 asn: "65234"

Context

19 / 42

Don't Repeat Yourself
Don't have the same info twice (IPv4 Lo0, router-id)
Generate the IPv6 loopback

172 18 4 10

10101100 00010010 00000100 00001010

This is the 20% part

20 / 42

Don't Repeat Yourself
Don't have the same info twice (IPv4 Lo0, router-id)
Generate the IPv6 loopback

172 18 4 10

10101100 00010010 00000100 00001010

4 10

00 00 01 00 00001010

Region Site Layer Device

This is the 20% part

21 / 42

Don't Repeat Yourself
Don't have the same info twice (IPv4 Lo0, router-id)
Generate the IPv6 loopback
Encode information into bit fields
BGP ASN? Sure!

Region Site Layer Device

65
X
X
X
.
X
X
X
XX

<16 bits>.<16 bits>

This is the 20% part

22 / 42

REGION 0 LEAF 172.18.4.10

Region Site Layer

Device

00 00 01 00 00001010

65
0
0
1 .
(4 * 256 + 10) 65001.1034

This is the 20% part

23 / 42

REGION 3 SUPERSPINE 172.18.72.75

Region Site Layer

Device

11 00 11 00 01001011

65
3
0
3
.(72 * 256 + 75) 65303.18507

This is the 20% part

24 / 42

Why 16 bits?
Have to title the talk somehow
IPv4 Reachability
BGP 4-byte Private ASN space ~25
bits

Please do not do this in prod

This is the 20% part

25 / 42

nodes:
- router-id: 172.18.4.10
 addresses:
 Ethernet1/1:
 ipv4:
 - 10.0.0.0/31
 ipv6:
 - "2001:2b8:1::1/64"
 bgp:
 ipv4:
 peer-groups:
 - name: SPINE-LEAF
 outbound-policy: SPINE-TO-LEAF
 inbound-policy: LEAF-TO-SPINE
 neighbors:
 - address: 10.0.0.1
 asn: "65234"

Context

26 / 42

DC1-LEAF4 DC4-LEAF9

interface Ethernet49/1
- description DC1-SPINE1:Et5/1
 no switchport
- ip address 10.0.0.0/31
- ipv6 address 2001:db8::ffff:0a00:0/127
 pim ipv4 sparse-mode
 pim ipv6 sparse-mode

interface Ethernet 49/1
+ description DC4-SPINE3:Et5/1
 no switchport
+ ip address 10.5.49.22/31
+ ipv6 address 2001:db8::ffff:a05:3116/127
 pim ipv4 sparse-mode
 pim ipv6 sparse-mode

router bgp 65001.1034
 neighbor SPINES-v4 peer-group
 neighbor SPINES-v6 peer-group
- neighbor 10.0.0.1 peer-group SPINES-v4
- neighbor 10.0.0.1 remote-as 65002.3080
- neighbor 2001:db8:ffff:0a00:1 peer-group SPINES-v6
- neighbor 2001:db8:ffff:0a00:1 remote-as 65002.3080
 address-family ipv4 unicast
 peer-group SPINES-v4 activate
 no peer-group SPINES-v6 activate
 !
 address-family ipv6 unicast
 no peer-group SPINES-v4 activate
 peer-group SPINES-v6 activate
 !
!

router bgp 65031.1077
 neighbor SPINES-v4 peer-group
 neighbor SPINES-v6 peer-group
+ neighbor 10.5.49.23 peer-group SPINES-v4
+ neighbor 10.5.49.23 remote-as 65032.3088
+ neighbor 2001:db8::ffff:a05:3117 peer-group SPINES-v6
+ neighbor 2001:db8::ffff:a05:3117 remote-as 65032.3088
 address-family ipv4 unicast
 peer-group SPINES-v4 activate
 no peer-group SPINES-v6 activate
 !
 address-family ipv6 unicast
 no peer-group SPINES-v4 activate
 peer-group SPINES-v6 activate
 !
!

Interfaces

27 / 42

RFC5549 - IPv4 NLRI in IPv6 Peering
Allows IPv4 reachability over just IPv6 peerings
No longer need IPv4 BGP peerings
No longer need IPv4 point to point interfaces!

interface Ethernet49/1
 ipv6 address 2001:db8::ffff:0a00:0/127
 pim ipv4 sparse-mode
 pim ipv6 sparse-mode
!
router bgp 65001.1034
 neighbor SPINES peer-group
 neighbor 2001:db8::ffff:0a00:1/127 peer-group SPINES
 neighbor 2001:db8::ffff:0a00:1/127 remote-as 65002.3080
 address-family ipv4 unicast
 bgp next-hop address-family ipv6
 neighbor SPINES activate
 neighbor SPINES next-hop address-family ipv6 originate
 !
 address-family ipv6 unicast
 neighbor SPINES activate
 !
!

Interfaces

28 / 42

https://datatracker.ietf.org/doc/html/rfc5549

draft-white-linklocal-capability
Widely supported across vendors
Standardizes existing practice of BGP peering via link-local IPv6 addresses
Now we don't need any globally unique addressing!

interface Ethernet49/1
 ipv6 address fe80::0/64
 pim ipv4 sparse-mode
 pim ipv6 sparse-mode
!
router bgp 65001.1034
 neighbor SPINES peer-group
 neighbor fe80::1%Ethernet49/1 peer-group SPINES
 neighbor fe80::1%Ethernet49/1 remote-as 65002.3080
 address-family ipv4 unicast
 bgp next-hop address-family ipv6
 neighbor SPINES activate
 neighbor SPINES next-hop address-family ipv6 originate
 !
 address-family ipv6 unicast
 neighbor SPINES activate
 !
!

But wait, there's more!

29 / 42

https://datatracker.ietf.org/doc/draft-white-linklocal-capability/

BGP Peer autodetection
Multiple IETF IDR WG proposals (see draft-ietf-idr-bgp-autoconf-
considerations)
Some Layer2 (LLDP), some Layer3
Some are secured, some aren't
Some are stateful, some are stateless
No real consensus yet
Trying to support all DC use cases

BGP Peerings

30 / 42

https://datatracker.ietf.org/doc/draft-ietf-idr-bgp-autoconf-considerations/02/

More than one vendor supports IPv6 link-local peer autodetection
Uses IPv6 RAs to identify routers on an interface
No current RFC or I-D for this behavior
There may be interoperability issues

interface Ethernet49/1
 ipv6 enable
 pim ipv4 sparse-mode
 pim ipv6 sparse-mode
!
peer-filter SPINES
 10 match 4200000000-4294967294 result accept
!
router bgp 65001.1034
 neighbor SPINES peer-group
 neighbor interface Ethernet49/1 peer-group SPINES peer-filter SPINES
 address-family ipv4 unicast
 bgp next-hop address-family ipv6
 neighbor SPINES activate
 neighbor SPINES next-hop address-family ipv6 originate
 !
 address-family ipv6 unicast
 neighbor SPINES activate
 !
!

BGP Peerings

31 / 42

Neighborships can specify AS ranges
Still have to statically map a policy to an interface

DC1-SPINE1

neighbor interface Ethernet1-48 peer-group LEAVES peer-filter LEAVES
neighbor interface Ethernet49/1-52/1 peer-group SUPERSPINES peer-filter SUPERSPINES

While we can predict this in our lab, production isn't as nice

neighbor interface Ethernet52/4 peer-group LEAVES peer-filter TEMP-LEAF

BGP Peerings

32 / 42

If your virtualization and tenancy model supports it, go deeper!
Assign hosts router-ids

Deployment
Custom DHCP

Advertise reachability via host-based BGP
GoBGP
FRR

IPv6 LL Autodetection Supported!

Hosts

33 / 42

Connect servers to one or more leaves
No more Layer 2 problems!

LACP/MLAG
Spanning Tree

Hosts

34 / 42

router bgp 65001.1034
 neighbor SPINES peer-group
 neighbor SERVERS peer-group
 neighbor interface Ethernet1-48 peer-group SERVERS peer-filter SERVERS
 neighbor interface Ethernet49/1-52/4 peer-group SPINES peer-filter SPINES
 address-family ipv4 unicast
 bgp next-hop address-family ipv6
 neighbor SERVERS activate
 neighbor SERVERS next-hop address-family ipv6 originate
 neighbor SPINES activate
 neighbor SPINES next-hop address-family ipv6 originate
 !
 address-family ipv6 unicast
 neighbor SERVERS activate
 neighbor SPINES activate
 !
!

Hosts

35 / 42

router bgp 65001.1034
 neighbor SPINES peer-group
 neighbor SERVERS peer-group
 neighbor interface Ethernet1-48 peer-group SERVERS peer-filter SERVERS
 neighbor interface Ethernet49/1-52/4 peer-group SPINES peer-filter SPINES
 address-family ipv4 unicast
 bgp next-hop address-family ipv6
 neighbor SERVERS activate
 neighbor SERVERS next-hop address-family ipv6 originate
 neighbor SPINES activate
 neighbor SPINES next-hop address-family ipv6 originate
 !
 address-family ipv6 unicast
 neighbor SERVERS activate
 neighbor SPINES activate
 !
!

What would be great is if remote AS determined policy
Ask your vendor if this is something they can support
May require stronger security (RFC 5925 TCP-AO)

Hosts

36 / 42

https://datatracker.ietf.org/doc/html/rfc5925

Recap
Eliminated boilerplate

templates
anycast

Derived as much as possible from the router-id
Removed non-loopback addressing
BGP to everything

37 / 42

nodes:
- hostname: dc1-leaf1
 region: dc1
 role: leaf

 aaa:
 - 192.168.3.2
 - 192.168.10.1
 - 192.168.14.10
 addresses:
 Loopback0:
 ipv4:
 - 172.18.4.10/32
 ipv6:
 - "2001:db8::1/128"
 Ethernet1/1:
 ipv4:
 - 10.0.0.0/31
 ipv6:
 - "2001:2b8:1::1/64"
 bgp:
 router-id: 172.18.4.10
 asn: "65534"
 ipv4:
 peer-groups:
 - name: SPINE-LEAF

 outbound-policy: SPINE-TO-LEAF
 inbound-policy: LEAF-TO-SPINE
 neighbors:
 - address: 10.0.0.1

asn: "65234"

nodes:
- router-id: 172.18.8.0 # site1-spine
- router-id: 172.18.8.1 # site1-spine
- router-id: 172.18.4.2 # site1-leaf
- router-id: 172.18.4.3 # site1-leaf
- router-id: 172.18.4.4 # site1-leaf
- router-id: 172.18.0.5 # site1-server
- router-id: 172.18.0.6 # site1-server
- router-id: 172.18.0.7 # site1-server
- router-id: 172.18.0.8 # site1-server
- router-id: 172.18.28.9 # site2-superspine
- router-id: 172.18.24.10 # site2-spine
- router-id: 172.18.20.11 # site2-leaf
- router-id: 172.18.16.12 # site2-server

Context

38 / 42

39 / 42

40 / 42

Thank you
Questions ?

www.github.com/bewing/chinog-10

41 / 42

https://www.github.com/bewing/chinog-10/

Bitshifting
func loadNodeData(routerId string) (NodeData, error) {
 nd := NodeData{}
 ip, err := netip.ParseAddr(routerId)
 if err != nil {
 return nd, err
 }
 data := ip.AsSlice()[2]
 typeByte := data & 12 >> 2
 if typeByte^1 == 0 {
 nd.Type = "leaf"
 nd.Layer = 1
 } else if typeByte^2 == 0 {
 nd.Type = "spine"
 nd.Layer = 2
 } else if typeByte^3 == 0 {
 nd.Type = "superspine"
 nd.Layer = 3
 } else {
 nd.Type = "server"
 nd.Layer = 0
 }
 nd.Region = int(data & 192 >> 6)
 nd.Site = int(data & 48 >> 4)

 nd.ASN = fmt.Sprintf("65%d%d%d.%d", nd.Region, nd.Site, nd.Layer, int(ip.AsSlice()[2])*256+int(ip.AsSlice()[3]))
 return nd, nil
}

42 / 42

