
Routing for AI training (and
inference) clusters

Petr Lapukhov

Agenda

- Quick historic detour: before GPUs
- The dawn of GPU networking
- The “AI” Topology building patterns
- What’s next and more

Historic Detour

The good old days of ~2011

No AI craze back then (only SDN)

- …Yet industry already had 100K-port clusters!
- Except those were CPUs

Typical layout:

- Online-services: query-response traffic
- Data-mining (map-reduce/Hadoop)
- …

100-200W @ server → ~10-20 MW for 100K servers

Client

Server

Server
Server

Server

Partition / aggregate

The victory of Layer-3

- L2 spanning had resiliency and scaling problems
- “Routable L2” (TRILL, FabricPath,...) did not gain

momentum
- Routed tree architectures (IGP and/or BGP) won
- Flow-based hashing (ECMP) with all its joys

Surprisingly, (!) BGP became a “standard” in data-center

Spoiler alert: the same remained true in “AI training” clusters

Acc Acc Acc Acc

Agg Agg

Core

IGP
BGP

The E/W traffic and fat-trees

- Map-reduce data-shuffling → all-to-all traffic
- Bandwidth: fat tree with multi-pathing
- Switch radix: 64-128 leading to 3- or 5- tier

trees
- Typical fan-out: 4-way or 8-way (planes)

One big “converged” fat tree for all traffic
(online + data-mining + storage)

Leaf Leaf Leaf Leaf

Spine Spine Spine Spine

ToR ToR ToR ToR

Clients

Services
Data-mining

+
Storage

N/S E/W

A word on the transport (~2011-2012): TCP is the king

- TCP was undisputed - with various tunings: ECN, DC-TCP…
- Memory bandwidth (memcopies) + CPU cores burning
- …but, NIC-assisted offloads (GSO, LRO, checksum) - to save CPU
- The incast (fan-in) and speed mismatch (e.g., 10G → 1G) problems
- Elephant flows? Not so much, because you can always add more flows

Despite TCP shortcomings, RDMA wasn’t popular.

RoCE v1 was around, mostly used for storage.
RoCE v2 (RRoCE) started taking shape (storage, again)
iWARP?

The dawn of GPU networking

From TCP to RDMA
- GPU-based systems started entering scene starting 2014-2015
- Moving data to GPU was via CPU + NIC via host memory (with extra copies)
- Then came GPUDirect + RDMA NIC (CPU orchestrated)

GPU

CPU

H
B
M

D
D
R

PCIe NIC Network

RDMA
transport

Direct data
placement

From TCP to RDMA: per aspera ad astra

- NIC-based transport - hard(er) to inspect and debug
- Some drama: the RoCE vs IB debate (same RDMA behind)
- Big fears of RoCE congestion spreading! (PFC)
- …RoCEv1 was not designed to scale
- …RoCEv2 took some time to “standardize”

Debugging RDMA is much more complicated:
your transport is in the NIC now

Leaf Leaf Leaf Leaf

Spine Spine Spine Spine

ToR ToR ToR ToR

Congestion

The collective communications (NCCL) [1]

Because you need the FLOPs: train/infer on many GPUs in parallel

- Training parallelism comes from either “sharding” or “replicating”
- In either case we get a ‘gang’ of GPUs communicating symmetrically

The collective comms replace Hadoop’s map-reduce flow graphs

The collective communications (NCCL) [2]

We encounter familiar “logical” and “transport” patterns:

- Logical: All-to-all/all-reduce/all-gather/reduce-scatter
- Transport: ring, halving-doubling, binary trees

Why NCCL over… say MPI?

collective:
all2all shuffle

RDMA transport:
ring flow

A GPU node schematics (HGX H100 board)

GPU 0 GPU 1 GPU 2 GPU 3

GPU 4 GPU 5 GPU 6 GPU 7

NIC 0 NIC 1 NIC 2 NIC 3

NVLINK [3 switches]

NIC 4 NIC 5 NIC 6 NIC 7

E.g. NIC =
50 GB/s
per GPU
—
NVLINK =
450 GB/s
per GPU

NOTE: There are also CPUs somewhere… and PCIe switches

A nice bonus: the NVLink network (a mini fabric)

The “scale-up” network:

- Started as fast memory sharing link for Pascal GPUs
- Evolved into a switched network with 1 layer of switches
- … from 2 to 72 GPUs!
- Now every “rack” has a mini-fabric inside

All of that in addition to GPU-to-GPU “scale-out” (E/W) networking

Rule of thumb: scale-up bandwidth is ~9x > scale-out

NVLINK SW
1-18

GPU
1

GPU
2

GPU
8…

E/W network

A collective (all-reduce) traffic flow (ring-based)

GPU 0 GPU 1 GPU 2 GPU 3

GPU 4 GPU 5 GPU 6 GPU 7

NIC 0 NIC 1 NIC 2 NIC 3

NVLINK

NIC 4 NIC 5 NIC 6 NIC 7

GPU 0 GPU 1 GPU 2 GPU 3

GPU 4 GPU 5 GPU 6 GPU 7

NIC 0 NIC 1 NIC 2 NIC 3

NVLINK

NIC 4 NIC 5 NIC 6 NIC 7

The great fabric schism

- So now we have a CPU + NIC and a GPU + NIC
- Can they use one NIC?
- Can they plug into same fabric?

Long-story short, many decided to split the fabrics

[1] NVLink private (always private - for now)

[2] GPU scale-out, or the E/W fabric (RDMA traffic)

[3] CPU N/S - storage and management

N/S fabric

GPU

E/W fabric

CPU

NVLINK

GPU

CPU

The “AI” topology building patterns

Your very first E/W cluster™

Switch
(144 ports)

8x GPUs

8x GPUs

8x GPUs

8x GPUs

8x GPUs

8x GPUs

Rack 1 Rack 2 Rack 9

- One-hop network to “deal” with
RoCE flow control

- Does not need to be routed
- Limited by switch radix
- Extra rack for resiliency

144 GPUs in one “pod:” single
switch

The new world order and its problems (1)

So we have the new RDMA fabric… Now what? :)

The flow load-balancing problem:

- RDMA NICs push at line rate of 100G/200G/400G NICs
- The “elephant” flows - do not play well with ECMP

The new world order and its problems (2)

The effects from the “collective” comms:

- Latency accumulation in “ring-based” collectives
- Congestion in “log-” collectives (trees, halving-doubling) - incast, again

The new world order and its problems (3)

Resiliency:

- Effect of failures much more pronounced - “collectives” fail together
- E.g., a single GPU failing will take down the whole “training job”
- Capacity losses (link downs) more pronounced with elephant flows -

topology imbalances

The first line of defence is “connection split” - add more flows to the network. But
that only improves as ~sqrt(N) with ECMP

The “OG” load-balancing idea: rails

Switch 1
N ports

Switch 8
N ports

Switch 2
N ports

Server 1
(8 GPUs)

Server N
(8 GPUs)

Server 2
(8 GPUs)

- Still one-hop for RDMA traffic
- Load-balancing by the collective

library: NCCL places flows on
different rails!

- Rank-disjoint planes - all-to-all
traffic has to cross over NVLink

- Optics in the NICs!
- No resiliency to switch failures

Here we get Nx8 GPUs in one “domain”

NIC NIC NIC NIC NIC NIC NIC NIC

NVLINK

Node → Network connectivity: “Rails” style

Rail switch [1] (radix N)
Port Port Port Port Port Port Port Port

Rail switch [8] (radix N)
Port Port Port Port Port Port Port Port

…

NIC NIC NIC NIC NIC NIC NIC NIC

NVLINK…

Server 1 Server N

Shuffle from “node” to
first hop switches

Traffic stays at “L1”

The fat tree for E/W: Rail optimized design

Leaf 1

8x GPUs

Leaf 2

8x GPUs

Leaf 8

8x GPUs

…

#1 #N

Leaf 1

8x GPUs

Leaf 2

8x GPUs

Leaf 8

8x GPUs

…

#1 #N

- Load-balancing from servers using rails
- After that, cross-rail “network routing”
- Hop count reduces inside “pods”
- Optics in the NIC, end-of-row leafs
- Leaf “blast radius”

Pod 1 Pod M

…

… …

Optical links

Spine
block 1

(M#)

Spine
block 8

(M#)

The fat tree for E/W, redux: ToR-based design

ToR

8x GPUs

8x GPUs

ToR

8x GPUs

8x GPUs

ToR N

8x GPUs

8x GPUs

Spine
1

(N#)

Spine
16+2
(N#)

Spine
2

(N#)

- Requires routing + RoCEv2
- ToR does flow load-balancing

(ECMP or something better)
- Uplinks may be 2x or more faster

than downlinks - better stat-muxing
- NIC connections are copper
- There is more uplinks per ToR then

downlinks - resiliency

Copper

N

16+2

Node to Network connectivity: “ToR” style

ToR: L1 (first hop) network switch

NIC NIC NIC NIC NIC NIC NIC NIC

Port Port Port Port Port Port Port Port

NVLINK

Uplinks (load-balanced)
→
the NCCL “rings” map here

GPU Server

NIC links go parallel
from “node” to first hop
switch

NCCL rings have to
escape beyond L1
switches

Fine-grained load-balancing & adaptive routing

By now we see that half of the problems is load-balancing :)

- Can we split elephant flows into smaller units?
- Flowlets, packet-spraying, etc
- Adaptive routing: distribute load based on network utilization
- Supporting out-of-order packets in the endpoint

[1] In-network vs. in-NIC

[2] Oblivious vs. adaptive

[3] No standards, really

RDMA congestion control and QoS

The “original” RDMA/RoCE needed lossy fabric: PFC

- Packet loss triggers Go-Back-N
- PFC remains an important mechanism!
- Few congestion control algorithms exist (DCQCN, ZTR) - proprietary

QoS needed to separate: CNP and NCCL RTS/CTS (rendezvous)

QoS could be useful to separate different collective types

What’s left out…

- InfiniBand vs. Ethernet!
- Adaptive routing + RDMA transport inter-play
- Very large clusters: resiliency and network power efficiency (CPO, LPO…)
- Very large clusters: geo-distribution - multiple buildings or regions
- What’s next for RDMA “transport”?
- Will NVLink and Ethernet/InfiniBand ever converge?

On 100K and beyond

Back to 100K clusters, but now with GPUs

Utility power becomes a precious resource

- Was ~100-200W per single-CPU, now ~1KW per GPU
- 100-150 MW for a 100K cluster!

Reliability now even more painful

- One big training job
- Resiliency can be built in training but there are limits

The network power wall

Network power starts to matter

- It’s not 10G links anymore…
- Few KW per switch
- ~ 22-25W for 1.6T OSFP

You end up with 10-20 of MW for the network for 100K+ cluster, climbing into 15%
zone

The large-scale “yet-power-efficient” network

Reducing number of fat-tree tiers

- Fat-tree scale is O(N * log(N))
- Want as shallow of a tree as possible
- E.g. 2 tier fat-tree - yet covering the 100K scale

Shallow (er) fat-tree:

- Requires running switches at maximal “fan-out” - e.g. 512x ports with 51T
switch*

- Now we have lots of thin links (100G?!), how we handle elephant flows?!

Requires fine-grained load-balancing from the host (NIC)

