

05.15.2025

CHI-NOG 2025

Agenda

- Financial Market Data
 - multicast
- The Need for Speed
 - latency
- Knowing When
 - timestamps
- •Q&A

Financial Market Data

- Transmitted via multicast over extranet connection
- Converted to a consumable multicast stream
- Propagated to remote data centers for use in trading algorithms

Multicast

- Protocols
 - BGP, OSPF
 - PIM ASM, SSM
- Exchange Connection
 - IGMP, PIM
- PIM Sparse Mode (ASM)
 - Rendezvous Placement
- Dealing with Drops
 - Replay Request
 - Arbitration

The Need for Speed

- Opportunities in markets are fleeting
- Competition is fierce
- Reducing latency is critical to success

Causes of Latency

- Queuing Delay
 - Network Congestion
- Transmission Delay
 - Bitrate of Link, Encoding Method
- Processing Delay
 - Cut-Through vs Store-and-Forward
 - Forward Error Correction
- Propagation Delay
 - Speed of Light?

Propagation Delay Optical Cable Types

Propagation Delay Optical Cable Types

Hollow Core Fiber

- Light travels through air
- ~45% reduction in latency

Point-to-Point Wireless Transmission

- Free Space Optics
- Communication at the Speed of Light

Point-to-Point Wireless Transmission

Shortwave

Knowing When

- Need to know when messages are received
- Packet Captures
 - Troubleshooting
 - Regulatory
 - Building Trading Strategies

>	Milliseconds (ms)	1/1,000	Thousandths of a Second
	Microseconds (µs)	1/1,000,000	Millionths of a Second
	Nanoseconds (ns)	1/1,000,000,000	Billionths of a Second
	Picoseconds (ps)	1/1,000,000,000,000	Trillionths of a Second

Time Distribution Protocols

- Network Time Protocol (NTP)
 - 1-10 millisecond accuracy
- Precision Time Protocol (PTP; IEEE 1588)
 - 100ns 10µs accuracy
- Pulse Per Second (PPS)
 - 10-100ns accuracy
- White Rabbit
 - Sub-nanosecond accuracy

Typical Packet Capture Design

For more information watch

Questions?