

# Fighting Route Leaks at Cloudflare

#### **Bryton Herdes**

Principal Network Engineer

#### Mingwei Zhang

Senior Systems Engineer

## Agenda

- 1 What's a route leak?
- 2 Complex peering relationships
- 3 The leak detection pipeline
- 4 Future impact prevention measures
- 5 Q&A

### What's a route leak?

#### **Route leaks**

- RFC7908
- "A route leak is the propagation of routing announcement(s) beyond their intended scope"

#### **Traffic impact**



# Iflare's perspection ober 30 (How Toron Oprincident on Oprincident on Oprincident on June 21, 2024 Cloudflare's perspective of the 'age

ocked Large Parts net Offline Today

Route leak incident on October

# Complex peering relationships



Added 19 new cities since Jan 2024. Have 713 data centers, in 128 countries/regions, and AI inference enabled in 197 cities

₹ 13,000 networks

directly connect to Cloudflare, including most major ISPs, cloud providers, and enterprises

#### 

global network edge capacity, consisting of transit connections, peering, and private network interconnects; added 30% capacity in 2024

→ ~50 ms

from ~95% of the world's Internet connected population



Cloudflare city (as of Q1 2025)

Cloudflare backbone (as of Q1 2025)

#### **Anycast**



- Advertised everywhere
- Routed to nearest data center
- Directly shared with almost every tier-1

#### **Unicast**



- Originated from single location
- Routed to single data center and server

#### **Transit**



- Typical provider relationship per data center
- AS65001 advertises our prefixes anywhere and everywhere\*
  - \* kind of

#### **Peering**



- Typical peering relationship
- Advertise our routes only to AS65001 customers
- Peer→Provider propagation is a leak

#### Mixed transit and peering



- Send *local* unicast prefixes upstream
- Share anycast prefixes with customers
- Anycast peer⇒provider propagation is a leak
- Common for embedded cache

#### Variables to account for

- Leak detection relies on accurate AS-level relationship inference
- AS relationship varies per prefix
  - anycast vs. unicast
- AS relationship varies per location
  - A transit somewhere may be a peer elsewhere

# **Detection Pipeline**

#### Pipeline overview



#### **BGP** message stream



#### AS relationship inference

- Peer-peer or upstream-downstream?
- Combination of data sources
  - CAIDA/UCSD's AS relationship data
  - BGPKIT AS relationship data
  - Internal inference results
- Inference can be unreliable, especially with complex relationships



#### **Prefix-level Ground-truth: Unicast Prefix**

- Each unicast prefix should only be announced via one PoP
- Each PoP have a number upstreams
- Next hop on the upstream list?
  - Yes: treating AS-rel to be upstream

No: treating AS-rel to be peering



#### **Prefix-level Ground-truth: Anycast Prefix**

- Only a handful of ASNs should be allow to provide transit for anycast prefixes
- If next-hop is not one of them, we force treating it as peering relationship









#### **Example internal alerts**



```
Detected route leak event: <a href="https://">https://</a>.

AS rel 0: <a href="https://">https://</a>.

Event type: <a href="t4">t4 Peer-Cust-Prov</a>

Detected time: <a href="2025-04-28T13:46:43">2025-04-28T13:46:43 UTC</a>

Leak ASN: <a href="#">9304 HGC Global Communications Limited; Hong Kong</a>

Leak segment: <a href="#">174</a> <a href="#">9304</a> <a href="#">9304</a> <a href="#">13335</a>

Origins Count: <a href="#">1</a>

Peer Count: <a href="#">9</a>
```

Prefix Count: 4

9:45 AM · Apr 28, 2025 · 130 Views



# Future impact prevention measures

#### **BGP Autonomous System Provider Authorization (ASPA)**

- draft-ietf-sidrops-aspa-verification
- Create signed ASPA objects on RPKI
- List of authorized transit upstream providers per ASN
- Validate paths, and invalidate route leaks
- Implementation status
  - OpenBGPD, BIRD, FreeRTR, BGP-SRx

#### **Limitations of ASPA**

- No prefix level granularity
- Not so great for current state of AS13335

#### Getting the most out of ASPA

- Express BGP intent at AS-level if possible for primary ASN (13335)
- Use of alternative origin ASN ??
- Bonus: clean up AS-SET memberships

#### RFC9234 Roles and Only To Customer Attribute

- BGP roles assigned to peering and communicated in OPEN
- OTC attribute (Only To Customer)
- Implementation status
  - OpenBGPD, BIRD, FRR, Mikrotik RouterOS (partial)

#### RFC9234 Roles and Only To Customer Attribute

#### 6. Additional Considerations

Roles **MUST NOT** be configured on an eBGP session with a Complex peering relationship. If multiple eBGP sessions can segregate the Complex peering relationship into eBGP sessions with normal peering relationships, BGP Roles **SHOULD** be used on each of the resulting eBGP sessions.

An operator may want to achieve an equivalent outcome by configuring policies on a per-prefix basis to follow the definitions of peering relations as described in <u>Section 3.1</u>. However, in this case, there are no in-band measures to check the correctness of the per-prefix peering configuration.



### Thank you

### Questions?